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Abstract:
<p>Time-reversal is a method of focusing sound in the ocean that has found a variety of
applications in recent years, ranging from underwater communications to biological stone
destruction. In order to produce a focal spot, the time-reversal process first needs to acquire
the Green's function between source and receiver. This Green's function is time-reversed and
retransmitted in order to produce a spatio-temporal focal spot at the original source location. If
the medium properties in between the source and receiver change between the acquisition of the
Green's function and the subsequent retransmission, the quality of the focal spot can degrade
or even disappear. However, the time-reversal focal spot has been found to be surprisingly
robust to changes in medium properties, which are chiefly sound speed fluctuations in underwater
acoustics. At 445 Hz, the focal spot was seen to persist for a week, while at 3.5 kHz, the focal spot
persists for about an hour.</p> <p>Sensitivity kernels have the ability to linearly map sound speed
perturbations to a perturbation of an acoustic parameter such as travel-time or pressure. Sensitivity
kernels have a Fresnel-like interference pattern with regions of positive and negative sensitivities
in the medium. Time-reversal, which causes different arrival paths to arrive at the same time,
results in overlapping sensitivity kernels that leads to a net reduction in pressure sensitivity at

http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org
http://www.escholarship.org/uc/sio
http://www.escholarship.org/uc/sio
http://www.escholarship.org/uc/ucsd
http://www.escholarship.org/uc/search?creator=Raghukumar, Kaustubha
http://www.escholarship.org/uc/sio_techreport
http://www.escholarship.org/uc/item/86g5s4w8


Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
2009 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2009 to 00-00-2009  

4. TITLE AND SUBTITLE 
Pressure Sensitivity Kernels Applied to Time-reversal Acoustics 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California, San Diego,9500 Gilman Dr,La Jolla,CA,92093 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
see report 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

147 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



eScholarship provides open access, scholarly publishing
services to the University of California and delivers a dynamic
research platform to scholars worldwide.

the focal spot. Upon expressing the pressure at the focal spot in terms of sensitivity kernels,
source transmissions are derived that are even more robust than time-reversal. </p> <p>The
theory developed using pressure sensitivity kernels is tested on experimental data, along with an
internal wave model, using various metrics. The linear limitations of the kernels are explored in the
context of time-evolving Green's functions. The optimized source functions are then tested using
experimental Green's functions and their behavior is seen to be in the right sense.</p> <p>Finally,
thermistor chain data gathered during a similar experiment allowed for the testing of a 'synthetic
aperture thermistor chain'. Temperature observations, presumably caused by displacements of a
reference temperature profile, are inverted to provide an estimate of the background temperature
profile.</p>
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Time-reversal is a method of focusing sound in the ocean that has found a

variety of applications in recent years, ranging from underwater communications

to biological stone destruction. In order to produce a focal spot, the time-reversal

process first needs to acquire the Green’s function between source and receiver.

This Green’s function is time-reversed and retransmitted in order to produce a

spatio-temporal focal spot at the original source location. If the medium prop-

erties in between the source and receiver change between the acquisition of the

Green’s function and the subsequent retransmission, the quality of the focal spot

can degrade or even disappear. However, the time-reversal focal spot has been

found to be surprisingly robust to changes in medium properties, which are chiefly

sound speed fluctuations in underwater acoustics. At 445 Hz, the focal spot was

seen to persist for a week, while at 3.5 kHz, the focal spot persists for about an

hour.

Sensitivity kernels have the ability to linearly map sound speed perturba-

tions to a perturbation of an acoustic parameter such as travel-time or pressure.

Sensitivity kernels have a Fresnel-like interference pattern with regions of positive

and negative sensitivities in the medium. Time-reversal, which causes different ar-

rival paths to arrive at the same time, results in overlapping sensitivity kernels that

leads to a net reduction in pressure sensitivity at the focal spot. Upon expressing

the pressure at the focal spot in terms of sensitivity kernels, source transmissions
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are derived that are even more robust than time-reversal.

The theory developed using pressure sensitivity kernels is tested on experi-

mental data, along with an internal wave model, using various metrics. The linear

limitations of the kernels are explored in the context of time-evolving Green’s func-

tions. The optimized source functions are then tested using experimental Green’s

functions and their behavior is seen to be in the right sense.

Finally, thermistor chain data gathered during a similar experiment allowed

for the testing of a ’synthetic aperture thermistor chain’. Temperature observa-

tions, presumably caused by displacements of a reference temperature profile, are

inverted to provide an estimate of the background temperature profile.
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Chapter 1

Introduction

1.1 Background

The scientific focus on shallow water acoustics since the end of the cold war

has lead to a renewed interest in environmentally-induced acoustic fluctuations,

together with ways and means to understand and mitigate their effect. A wide

variety of applications ranging from underwater communications and mine detec-

tion to the acoustic tagging of marine mammals require an understanding of the

oceanographic fluctuations that can influence an acoustic signal as it makes its way

from a source to the receiver. Shallow water acoustic propagation, in particular,

has to deal with a higher degree of environmental complexity compared to acoustic

propagation in deeper water. This is due to a variety of reasons such as increased

bottom and surface interaction, a higher frequency of operation, and a higher noise

floor due to the proximity to shipping lanes. [1] Another major cause of fluctua-

tions are internal waves whose presence results in the heaving of the thermocline

in the water column, resulting in sound speed perturbations that in turn perturb

the acoustic signal.

Understanding the effects of a fluctuating sound speed profile on the var-

ious paths of the received multipath signal is important in order to separate out

environmental effects from the desired signal. In order to be able to better perform

physics-based signal processing, a variety of experiments have been conducted in

recent years to study acoustic fluctuations. As an example, one such cruise that

1
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took wide-ranging environmental measurements was the Kaui-Ex experiment that

took place off the coast of Kauai in July 2003. [2] In addition to near-continuous

probing of the acoustic channel using a variety of vertical and bottom mounted

arrays, oceanographic measurements were made of quantities such as the surface

wave spectrum, 2D temperature structure, salinity, currents and bottom proper-

ties.

Complementary to the work done during Kauai-Ex, which can primarily be

seen as dealing with understanding the forward problem, is the effort to invert an

acoustic signal for the environment that gave it its unique signature. This work

ranges from the contributions to geoacoustic inversion made by Gerstoft [3] to the

shallow water acoustic tomography work by Cornuelle et. al.[4] and Hursky et. al.

[5]

Time-reversal is a method of focusing sound in the ocean in range, depth

and time that has proven remarkably robust to sound speed fluctuations. While

time-reversal has been widely used in applications ranging from underwater com-

munications to target detection, efforts to understand the reasons for its stability

have been lacking. Fundamentally, this thesis can be seen as providing an explana-

tion for the stability of time-reversal using some of the tools developed in seismic

and acoustic tomography. Further, the same tools are utilized in an optimization

framework together with a knowledge of fluctuation statistics to develop new sets

of signals that can be made even more stable than time-reversal. This can be seen

as an example of physics-based signal processing that was alluded to earlier.

1.2 Time-reversal

The first time-reversal experiment in the ocean was conducted by Parvulescu

and Clay in 1965.[6, 7] The authors viewed the ocean as a black box that has a

particular impulse response. Given an input signal s(t) and an impulse response

h(t), the received signal r(t) can be expressed as the convolution of the input signal
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with the impulse response.

r(t) = s(t) ~ h(t) (1.1)

=

∫ ∞
−∞

s(τ)h(t− τ)dτ (1.2)

Recognizing that a convolution operation with one of the signals reversed in time

is the same as correlating the two signals, they were able to use the ocean as a

‘correlator’ by time-reversing and retransmitting an approximation to the impulse

response, i.e. by recording and transmitting h(−t), they were able to obtain a

received signal that is the autocorrelation of h(t). Of course, there is the possibility

that the impulse response may have changed between the time of recording and

retransmitting, in which case the received signal will be the cross-correlation of

two impulse responses. The correlation peak is akin to a focal spot at the location

of the source, whose quality (peak power, peak-to-sidelobe ratio) will depend on

the degree of similarity between the two impulse responses. Fig. 1.1, taken from

Parvulescu[7], is a simple schematic of how time-reversal works. Time-reversal of

the impulse response and subsequent retransmission will cause each pulse to elicit

a response. One of the paths for each response will arrive at exactly the same time,

and due to the linearity of the hydrophone response, the pressure at this time will

be exactly three times those of the sidelobes. One can thus see that the larger the

number of multipaths, the higher will be the peak relative to the sidelobes.

Time-reversal is a time-domain concept whose equivalent in the frequency

domain is phase conjugation. Phase conjugation was originally employed in non-

linear optics where medium nonlinearities are used to scatter incident light in a

way that the resulting scattered signal is a phase-conjugated version of the incident

radiation. [8]The scattering medium is called a phase conjugating mirror, and just

like in acoustics, takes advantage of the time-reversal invariance of the wave equa-

tion. In addition to the invariance property, time-reversal also takes advantage of

reciprocity in the medium, i.e. the response of the medium is the same whether

going from source to receiver or receiver to source.

Following a number of years of attention in the optics community, phase

conjugation regained prominence in acoustics after a series of ultrasonics exper-

iments by Fink et. al. [9, 10] who demonstrated focusing of sound using time
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Figure 1.1: A schematic for how time-reversal works, based on Parvulescu and
Clay.[6]

reversal mirrors. In one of the first experiments, a closed cavity containing a

source is surrounded by transducers. Sound emitted by the source is scattered by

heterogeneities in the cavity and recorded by the surrounding transducers. Upon

emitting the time-reversed version of the recording, it was seen to focus back on

the source location. This experiment showed promise in the ability of sound fo-

cused by time-reversal in biological stone destruction. Another experiment showed

that if the medium is weakly homogeneous (dominated by single scattering), then a

time-reversal mirror can produce a focal spot comparable to that of a closed-cavity,

whose realization can be difficult in practice.
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Around the same time that Fink et. al. were conducting the ultrasonic

time-reversal experiments, Jackson and Dowling [11] proposed the viability of

phase conjugation as a means of solving many longstanding problems in under-

water acoustics. The behavior of phase conjugate arrays in underwater acoustics

was studied through several examples and the effects of aperture size and inho-

mogeneities in medium propagation were treated for both near-field and far-field

regions.

The first time-reversal array experiment in the ocean was conducted by

Kuperman et. al. [12] in the Mediterranean Sea in 1996. This experiment suc-

cessfully demonstrated focusing in the ocean waveguide at a distance of 6.3 km

using a 50 ms pulse centered at 445 Hz. In addition to showing that the ocean

acoustic experiments were consistent with theory, the stability of the focal spot

was studied, and found to be robust for a time period of over an hour. The success

of this proof-of-concept experiment in 1996 paved the way for a series of time-

reversal experiments in the region conducted by the same group, and were termed

the Focused Acoustic Fields (FAF) experiments. These experiments [13, 14, 15, 16]

studied the utility of time-reversal in a variety of applications, ranging from un-

derwater communications to buried target detection. Some of these applications

will be described in the following section. In addition, the experiments also exam-

ined the stability of the focal spot for a number of ranges, frequencies and depths,

providing valuable insight into the physics of time-reversal in the ocean. The data

gathered during one of these experiments, FAF 2005, is used in this thesis while

studying the stability aspects of the time-reversal focus.

1.2.1 Applications of Time-reversal

The ability of time-reversal to focus sound in space and time lends its itself

to a wide variety of applications. Time-reversal, when proposed by Parvulescu and

Clay[6], was seen as a way of allowing the ocean to perform the correlation process,

thus saving on the limited computational resources available at the time. When

phase conjugation was later proposed in optics, it was seen as having potential

applications in adaptive optics, lenseless imaging, phase-conjugate resonators and
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image processing[17].

Time-reversal in ultrasonics[10] was originally proposed as a way of per-

forming lithotripsy (destruction of biological stones), by virtue of being able to

focus sound inside a cavity. In addition, it was found that iterative time-reversal

in the presence of multiple scatterers tends to converge to a focus on the strongest

scatterer. This aspect of time-reversal, while also having biomedical applications,

has been used in non-destructive testing to detect small surface anomalies.

In underwater acoustics, the most popular use of time-reversal has been in

the area of underwater communications. The idea was first proposed by Roux [18],

who recognized that time-reversal has the ability to mitigate the effects of multi-

path, which have long plagued underwater communications. In communications,

where several symbols are transmitted one after the other, multipath causes the

‘echos’ associated with any one symbol to overlap with the other symbols, causing

what is termed inter-symbol interference (ISI). Typically, communication receivers

are built to remove ISI using signal processing tools known as equalizers[19]. Time-

reversal, on the other hand exploits multipath, by effectively delaying each multi-

path such that all the different paths arrive at the same time, causing a focal spot.

Edelmann[14] showed that it is possible to encode phase information in the time-

reversed Green’s function that can then be recovered at the receiver end. The use

of the time-reversed Green’s function as a communication symbol has the advan-

tage of significantly reduced ISI due to the creation of a focal spot for each symbol.

The ISI suppression achieved by time-reversal is often insufficient for higher data

rate communications, or multiple-input multiple-output (MIMO) communications

[20], in which case time-reversal is typically followed by receiver side equalization.

Other uses of time-reversal in underwater acoustics include its use as an

acoustic barrier [21] and to detect buried objects[22]. In the acoustic barrier ex-

periment, a disturbance in the focal plane is used to alert the presence of a foreign

object between the source and receiver. When used for target detection, the ability

of time-reversal to focus on a target results in less energy interacting with rough

ocean boundaries above and below the focal spot. This give rise to an enhanced

echo-to-reverberation ratio which can be exploited to localize the target.
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1.2.2 Stability of Time-reversal

A highly attractive aspect of time-reversal, besides its focusing ability, is

the fact that the focus produced by a particular Green’s function can persist for

a while. This happens despite the fact that the Green’s function between the

acquisition and subsequent retransmissions has changed. At lower frequencies (445

Hz), it was found that the focal spot persists for several hours upto a week [13]. At

higher frequencies (3.5 kHz), the focal spot persisted for about an hour [15]. The

authors examined fluctuations of the time-reversal focal spot using the waveguide

invariant. They found that, in the presence of internal wave induced fluctuations,

the focal spot merely shifted in range, but was still present at a different location.

While the explanation is valid for a single frequency, or the narrowband case, the

translation to a broadband scenario is not entirely obvious. Recent experiments

(FAF 2005) were carried out using a 1 kHz bandwidth centered around 3.5 kHz.

Various other explanations have also been put forth to explain the stability of the

focus, which are examined in more detail in Chapter 2.

1.3 Motivation and purpose

This thesis can be seen as an attempt to explain the stability of the time-

reversal focal spot that can be applied regardless of the specific characteristics

of the time-reversal experiment such as geometry, frequency, bandwidth, etc. One

constraint that is invoked is that the sound speed perturbations that cause a degra-

dation of the focal spot be small enough to satisfy the single scattering assumption

(first Born approximation). It is also assumed that changes to the focal spot are

caused solely by sound speed fluctuations, and the effects of features such as sur-

face waves and non-linear internal waves are negligible. This is because non-linear

internal waves have been observed[23] to cause horizontal refraction of acoustic en-

ergy. While the analysis in this thesis can easily be extended to three dimensions,

only two-dimensional effects are considered at this time.

A change in the pressure of the focal spot due to a change in the sound speed

profile can be thought of as a pressure sensitivity to sound speed perturbations.
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Time-reversal has been observed to have a lower pressure sensitivity than a simple

pulse transmission. Given this line of reasoning, it becomes apparent that the use

of a formal sensitivity analysis framework can yield potentially useful results.

The FAF experiment that was conducted in July 2005 in the Mediterranean

sea focused on several aspects of time-reversal and time-reversal communications

using vertical line arrays and billboard arrays. The focal spot was seen to persist for

about an hour at 3.5 kHz with a 1 kHz pulse bandwidth. In addition to the time-

reversal segment, the experiment also contained a portion where Green’s functions

were acquired every 20 seconds over 8 hours. Given the availability of Green’s

functions, the time-reversal focus can be passively constructed on the computer,

and a variety of focusing scenarios can be studied.

In addition to the rich acoustic dataset available, the experiment also gath-

ered CTD (conductivity-temperature-depth) profiles and temperature time-series

over 12 days using two moored thermistor chains. The availability of acoustic and

environmental data allows for a detailed study of fluctuations and their effect on

time-reversal.

The main questions that this thesis addresses can thus be summarized as

follows:

• Does time-reversal have a lower pressure sensitivity to sound speed fluctua-

tions than a one-way transmission?

• Can sensitivity analysis be used to provide an answer why?

• Can knowledge of the pressure sensitivity be exploited to develop signals that

are even less sensitive than time-reversal?

• Can knowledge of the pressure sensitivity be used to predict the behavior of

the time-reversal focal spot?

The availability of the thermistor chain record also allowed for an additional

investigation that could be useful in sensitivity studies and internal wave model-

ing. The hypothesis is that the temperature fluctuations observed are caused by

repeated displacements of a background, or reference temperature profile. Thus,
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given the thermistor chain record, it should be possible to invert for the reference

profile using iterative methods. The last question question addressed in this thesis

is therefore,

• Given a thermistor chain record, is it possible to invert for a background

reference temperature profile?

1.4 Outline

This thesis is organized as follows1. Chapter 2 discusses the theory for sensi-

tivity analysis applied to time-reversal acoustics by introducing pressure sensitivity

kernels.[24] Two simple cases are considered: free-space and a Pekeris waveguide.

Sensitivity kernels are illustrated for each case, and an argument is made for the

reduction of sensitivity when time-reversal is used. The theory for pressure sensitiv-

ity kernels is then taken a step further, where the knowledge of pressure sensitivity

is used to derive optimized source functions that are closely related to the inverse

filter.[25] These functions contain adjustable parameters that allow for a tradeoff

between focal spot quality and sensitivity to sound speed fluctuations. Various

features of these functions are then illustrated for three simple perturbation sce-

narios: first, when medium perturbations are uncorrelated, second when there is a

channel of zero perturbation variance in depth, and the third when perturbations

have a long decorrelation scale.

Chapter 3 takes the theory developed in Chapter 2 and applies it to the

FAF05 dataset. [26] An internal wave model is developed whose characteristics

are matched to the environmental data available. It was found that the internal

wave model, together with a parabolic equation acoustic code, was able to capture

the of evolution of the peak of the time-reversal focal spot. This can be seen as

a acoustic test of the internal wave model. Sensitivity kernels are then computed

using experimentally gathered sound speed profiles and an attempt is made to track

Green’s functions as the evolve using these kernels. However, it was found that the

1Each chapter is essentially a full or partial reprint of papers that have been published,
accepted, submitted or in preparation for submission to a professional journal. Therefore, each
has been written in a paper format and is self-contained.
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linear nature of the kernels limits the tracking ability to only about 10 minutes of

fluctuations for the perturbation scenario encountered. Optimized source functions

are then computed using the sensitivity kernels and the experimentally gathered

Green’s functions. Their performance is compared to time-reversal and the inverse

filter for the given dataset and found to be in the right sense.

Chapter 4 deals with the problem of temperature profile estimation using

the thermistor chain record. Thermistor chain data used belonged to the FAF06

experiment. A different set of thermistor chain data is used compared to Chapter

3 due to the closer depth and time-spacing available in the FAF06 thermistor

chain data. This allowed for a better demonstration of the estimation method.

The iterative Gauss-Newton method that is used is introduced and its application

to the problem is discussed. The profile estimation algorithm is then applied to

three different cases. The first two use synthetically generated data that have a

known reference temperature while the third uses the FAF06 temperature data to

estimate an unknown reference. The first synthetic data case study uses randomly

generated temperature samples, while the second uses the internal wave model to

generate temperature time-series.
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Chapter 2

Pressure Sensitivity Kernels

Applied to Time-reversal

Acoustics

[Reprinted with permission from Kaustubha Raghukumar, Bruce Cornuelle,

William Hodgkiss, William Kuperman, J. Acoustic Soc. Am., Vol. 124, Issue 1,

pp. 98-112, 2008, Acoustical Society of America]

Sensitivity kernels for receptions of broadband sound transmissions are used

to study the effect of the transmitted signal on the sensitivity of the reception to

environmental perturbations. A first-order Born approximation is used to obtain

the pressure sensitivity of the received signal to small changes in medium sound

speed. The pressure perturbation to the received signal caused by medium sound

speed changes is expressed as a linear combination of single-frequency sensitivity

kernels weighted by the signal in the frequency domain. This formulation can be

used to predict the response of a source transmission to sound speed perturba-

tions. The stability of time-reversal is studied and compared to that of a one-way

transmission using sensitivity kernels. In the absence of multipath, a reduction

in pressure sensitivity using time-reversal is only obtained with multiple sources.

This can be attributed both to the presence of independent paths and to cancella-

tions that occur due to the overlap of sensitivity kernels for different source-receiver

paths. The sensitivity kernel is then optimized to give a new source transmission

14
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scheme that takes into account knowledge of the medium statistics and is related

to the regularized inverse filter.

2.1 Introduction

Time-reversed acoustics, due to its ability to focus energy in space and time,

has found numerous applications ranging from underwater and wireless commu-

nications to medical ultrasound therapy. [1, 2, 3] Time-reversal works by trans-

mitting a signal which is a time-reversed version of the observed Green’s function

between a source and receiver. This scheme assumes that the Green’s function has

not significantly changed between its acquisition and time-reversed retransmission.

Despite this assumption, the ability of time-reversal to produce a focal spot has

been found to be remarkably robust to environmental changes. In the ocean, the

focal spot has been shown to persist for a week at 445 Hz (50 ms pulse)[4], and

close to an hour at 3.5 kHz (10 ms pulse). [5]

Various explanations have been offered to understand the reason for the

robustness of time-reversal to environmental perturbations. Kim et al.[5], using the

theory of waveguide invariants for an oceanic waveguide, showed that while there is

little degradation in the intensity of the focal spot, it is seen to shift back and forth

in range as a result of internal wave induced sound speed fluctuations. While any

one realization of the focal spot may or may not be stable, an ensemble average of

focal spots tends to have high stability.[6] The presence of spatial diversity (large

arrays) has the same effect as an ensemble average and results in stability of the

focal spot. In random media[7], the probability of a realization of the focal spot

differing significantly from its expected value is small. This feature was referred

to as the self-averaging property of the focal spot which leads to the statistical

stability of time-reversal for broadband signals. The self-averaging property is

based on specific asymptotic limits more suited to optical and infrared time-reversal

than sonar or ultrasound.

The above contributions suggest the use of a formal sensitivity analysis to

analyze the stability of the time-reversal focal spot with respect to sound speed
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perturbations. Sensitivity, when defined as the derivative of the received pressure

signal with respect to medium sound speed fluctuations, provides a way to compare

time-reversal transmissions to one-way transmissions. Sensitivity kernels can be

a useful tool for analyzing various transmission schemes that have been proposed

that seek to provide an even more stable focal spot[5], or a focal spot with reduced

spatio-temporal sidelobes.[8, 9] The present work develops a pressure sensitivity

kernel that can be used with a variety of source transmissions. The sensitivity

kernels obtained for different source transmissions can be used as a performance

measure to study the effect of medium sound speed fluctuations on the received

signal. As an example, time-reversal is compared to a one-way transmission, and

an explanation is provided for the lower sensitivity of time-reversal. The ability to

express the received pressure perturbation as a function of the sensitivity kernel

allows for the development of a regularized version of the inverse filter [10], with a

physically relevant regularization. In this paper, source transmissions may some-

times be referred to as source functions, or source shading functions (for an array

of sources) in order to explicitly denote the time, frequency or spatial dependence

of the source transmission. This paper can be seen as primarily providing a the-

oretical framework, which is then visualized using a simple acoustic propagation

scenario. Free space acoustic propagation, followed by a Pekeris waveguide, is used

to visualize various sensitivity kernels.

Wave-theoretic sensitivity kernels were first proposed in seismology as a

finite-frequency tomography alternative to the more commonly used time-of-arrival

tomography. [11, 12, 13] A key contribution was in revealing that it is possible to

have zero sensitivity to sound speed perturbations along a ray path, while having

non-zero sensitivities in the region surrounding a ray path. More recently, travel-

time sensitivity kernels for ocean-acoustic tomography were developed and were

shown to exhibit similar properties to those developed in seismology. [14] These

kernels are currently being employed to invert for sound speed perturbations in a

shallow water waveguide using broadband acoustic signals. [15] All of these kernels

make use of a first-order Born approximation, which results in a linear relation

between the sound speed perturbation and either the induced pressure perturbation
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in the Green’s function or a travel-time perturbation. The first Born approximation

restricts the use of these sensitivity kernels to linear regimes where the sound

speed perturbation is small compared to the background sound speed profile. For

larger perturbations, non-linearities result, which can, to an extent, be handled by

iterative adjoint methods. [16] As a result of the first-order Born approximation, it

is assumed that the Green’s function used as a source transmission in time-reversal

represents an unperturbed medium, and that medium perturbations are restricted

to a linear regime.

The contents of this work are organized as follows. In Sec. II, pressure

sensitivity kernels are developed for the general case of an array of hydrophones

transmitting to a single receiver (broadside transmission). The theory can be

easily extended to a multiple-input multiple-output scenario. Sections III and IV

show examples of sensitivity kernels in free space and for a Pekeris waveguide,

respectively. The goal is to examine the sensitivity of time-reversal versus that

of a one-way transmission. In a dispersionless propagation environment, and in

the absence of a transmit array, there is no difference in sensitivity between time-

reversal and a one-way transmission. As suggested in Roux et al.,[17] a reduction in

sensitivity through time-reversal is only made in the presence of multiple sources,

or multipath propagation. Sensitivity kernels for a source-receiver path have a

Fresnel zone-like interference pattern, and a reduction in sensitivity for a finite-

frequency, finite-bandwidth case is caused by an averaging of several kernels that

correspond to multiple sources or multiple paths. Time-reversal results in each

of the multiple paths arriving at the same time, as a consequence of which the

sensitivity kernels for each of the paths add coherently to give an overall reduction

in sensitivity. This holds true not just for time-reversal, but also for inverse-filters,

or any transmission that results in the simultaneous arrival of different paths. In

addition to the coherent cancellation of sensitivities, there is also an incoherent

reduction in sensitivity that comes from independent paths having uncorrelated

sound speed perturbations. The incoherent reduction, however, is not addressed

in this paper.

In Sec. V, the sensitivity kernels are examined from an optimization point
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of view, the goal being to design source functions that offer the flexibility of trad-

ing mainlobe width for increased robustness. Semi-analytic expressions for the

optimized signals are offered, which result from a minimization of pressure per-

turbations together with a constraint on the focusing capabilities of the source

function. This approach leads to an expression for the optimized source function

which is an enhancement to the inverse filter.[18] Sec. VI presents the results of sim-

ulations in a Pekeris waveguide, where the optimized source function is compared

to time-reversal and the inverse filter. Sensitivity kernels for the optimized source

functions are presented, which explicitly use knowledge of fluctuation statistics to

lower sensitivity to medium perturbations. Finally, Sec. VII contains a discussion

of the results and draws conclusions from this work.

2.2 Pressure sensitivity kernels

The pressure perturbation to the Green’s function G(r|rs) at a location r

due to a harmonic point source of unit strength at location rs can be expressed as

∆G(r|rs) = −2ω2

∫
V

G(r|r′)G(r′|rs)
∆c(r′)

c3(r′)
dr′ (2.1)

This is called the first Born approximation.[19] It is also called the single- or weak-

scattering approximation, or wave-field linearization, and is widely used in connec-

tion with scattering problems.[20] It is a linear relation between the perturbation

in the sound-speed distribution and the induced perturbation in the Green’s func-

tion. The integration volume in eq. 2.1 is all space or the region encompassing the

source and receiver over which sound speed perturbations result in perturbations

to the Green’s function.

A key assumption upon which the validity of the first order Born approxi-

mation rests is that ∆c/c, integrated over the volume, be small. A consequence of

the volume integration in eq. 2.1 is that the validity of the first Born approximation

in a waveguide will depend on the path length. Longer path lengths will result

in the linear approximation breaking down at smaller sound speed perturbations

than for shorter path lengths. The effect of non-linearities was seen to start to
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creep in for a ∆c of 4 ms−1 with a background sound speed of around 1500 ms−1.

[21]

The Green’s function above is defined in the frequency-domain - the cir-

cular frequency ω enters the Helmholtz equation as a parameter. Further, the

Green’s function depends on the sound-speed distribution which also enters the

Helmholtz equation. In order to explicitly note these dependencies, G is written

in the following as G(r|rs;ω; c).

For a single point source the resultant pressure field can be written as

P (rr;ω; c) = G(rr|rs;ω; c)S(rs;ω) (2.2)

where P (rr;ω; c) is the frequency-domain pressure at receiver location rr, from a

source located at rs. G(rr|rs;ω; c) is the frequency-domain Green’s function that

turns pressure at the source at frequency ω to pressure at the receiver. S(rs;ω)

is the signal at source rs at frequency ω. For an array transmitting to a single

receiver, the received signal is given by adding up all source contributions:

P (rr;ω; c) =
Ns∑
i=1

G(rr|rsi;ω; c)S(rsi;ω) (2.3)

where rsi is the location of the ith source element, and Ns is the number of source

elements.

In the time-domain, the received signal is then given by

P (rr; t; c) =
Ns∑
i=1

∫ ∞
−∞

G(rr|rsi; t− t′; c)S(rsi; t
′)dt′ (2.4)

It is seen from eq. 2.4 that, in the case of an array-to-a-point transmission, the time-

domain Green’s function has been accumulated over source and time, weighted by

S, as opposed to a point-to-point transmission where the Green’s function is only

accumulated over time. For now, a heuristic argument can be made that this

additional spatial averaging could make the received signal more stable. This will

be shown more rigorously in Sec. VI.

In a perturbed propagation environment, the frequency domain perturba-

tion to the received pressure can be approximated by substituting the perturbed
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Green’s function into eq. 2.3

∆P (rr;ω; c) =
Ns∑
i=1

∆G(rr|rsi;ω; c)S(rsi;ω) (2.5)

Using eq. 2.1 for the perturbed Green’s function

∆P (rr;ω) =
Ns∑
i=1

(
− 2ω2

∫
V

G(rr|r;ω; c)G(r|rsi;ω; c)
∆c(r)

c3(r)
)dr
)
S(rsi;ω) (2.6)

Exchanging the order of integration and summation will yield the effective

pressure sensitivity kernel.

∆P (rr;ω) = −2ω2

∫
V

( Ns∑
i=1

G(rr|r;ω; c)G(r|rsi;ω; c)
∆c(r)

c3(r)
S(rsi;ω)

)
dr

=

∫
V

( Ns∑
i=1

Ki
pp(r;ω; c)

)
∆c(r)dr

=

∫
V

Kap(r;ω; c)∆c(r)dr (2.7)

where Ki
pp(r;ω; c) is the sensitivity of the received pressure for a receiver located

at rr to a sound speed perturbation at location r, for the single source with index

i located at rsi.

Ki
pp(r;ω; c) = −2ω2 G(rr|r;ω; c) G(r|rsi;ω; c)

1

c3(r)
S(rsi;ω)

≡ M i
pp(r;ω; c) S(rsi;ω) (2.8)

and Kap(r;ω; c) is the sensitivity of the received pressure to a sound speed pertur-

bation at location r, for an array of sources transmitting to a single receiver. M i
pp

can be recognized as part of the integrand in eq. 2.1, i.e. integrating M i
pp times

the sound speed perturbation over the region between source and receiver will give

the Born approximation to the perturbed Green’s function.

Eq. 2.7 is a linear relation between the pressure perturbation at the receiver

and sound speed perturbations in the medium, valid when ∆c/c is sufficiently small.

Eqs. 2.7-2.8 provide the framework for studying the effect of source trans-

mission schemes on the received pressure perturbation. Replacing S(rS;ω) by
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G∗(rr|rs;ω; c), will result in an expression for the pressure perturbation for a time-

reversal scheme. Replacing S(rs;ω) by 1/G(rr|rs;ω; c) will result in an expression

for the pressure perturbation for a scheme involving inverse filters.[18]

Finally, an additional way of looking at eq. 2.7 is in terms of an optimization

problem where the goal is to obtain a set of source transmissions that will minimize

the pressure perturbations at the receiver. This is more fully explored in Sec. V.

2.3 Free space sensitivity kernels

As a first step towards visualizing pressure sensitivity kernels, the analytical

framework developed in Sec. II is applied to acoustic propagation in free space.

The analytical framework for free space closely follows that of Skarsoulis.[14]

2.3.1 Analytical results

The complex amplitude of the 3-D Green’s function between a point source

located at rs and receiver at rr in a medium with uniform background sound speed

c has the form,

Gs(ω) =
eikR

4πR
(2.9)

where R = |rS − rr| is the source-receiver distance, k = ω/c.

Scatterers in the medium between source and receiver, each of which con-

tribute a sound speed perturbation ∆c(x, y, z) will cause a perturbation to the

Green’s function (eq. 2.1). Denoting the distance from the source to a scatterer

(sound speed anomaly) by R1 and from the scatterer to the receiver by R2, the

perturbation to the received pressure will be

∆P (ω) =
−2ω2

(4π)2c3

∫ ∫ ∫
eik[R1(x,y,z)+R2(x,y,z)]

R1(x, y, z)R2(x, y, z)
S(ω)∆c(x, y, z)dxdydz (2.10)

From eq. 2.10 and eq. 2.8, the free space sensitivity kernel for a single

source-receiver pair is

Kpp(x, y, z;ω) =
−2ω2

(4π)2c3
eik[R1(x,y,z)+R2(x,y,z)]

R1(x, y, z)R2(x, y, z)
S(ω) (2.11)
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The three-dimensional pressure sensitivity kernel can be reduced to two-dimensions

by integrating eq. 2.11 over the horizontal cross-range dimension. This assumes

that the sound speed anomalies between source and receiver do not vary in the

horizontal cross-range direction. Next, the continuous-valued kernel in eq. 2.11

can be discretized by integrating eq. 2.11 without the source term over grid cells

(Fig. 2.1), with the sound speed anomaly assumed to be constant over each cell.

These two operations yield the integrated pressure sensitivity for each grid cell

(eq. 2.8),

M i
pp(xn, zm;ω) =

−2ω2

(4π)2c3

∫ y0

−y0

∫ xn+dx/2

xn−dx/2

∫ zm+dz/2

zm−dz/2

eik[R1(xn,y,zm)+R2(xn,y,zm)]

R1(xn, y, zm)R2(xn, y, zm)
dzdxdy

(2.12)

Eq. 2.12 is numerically evaluated in Section V.

Eq. 2.12, multiplied by a source function will yield the point-to-point sensi-

tivity kernel (eq. 2.11), following which the pressure perturbation can be calculated

using eq. 2.10.

It is helpful to look at the time domain pressure sensitivity equations for

the simple case of free space propagation using both a unity frequency domain

source function and the phase conjugated Green’s function as source functions.

For a one-way transmission, S(ω) = 1 (delta function in time, centered

at t = 0). This will result in a single arrival at time t = R/c = T . Hence,

the time-domain sensitivity kernel for pressure at the time of the peak arrival is

evaluated at time t = R/c. For time-reversal, the shape of the spectrum stays the

same, but the signal is phased and shaded in such a way that the source function

S(ω) ∼ e−ikR

R
. This phasing will result in the single arrival occurring at time t = 0,

as opposed to the one-way transmission where the arrival occurs at t = R/c = T .

Hence, for time reversal, the sensitivity kernel for pressure at the time of the peak

arrival is evaluated at time t = 0. The sensitivity kernel at the time of an arrival

provides quantitative information about the sensitivity of the pressure amplitude

of the peak of the arrival to sound speed perturbations at any point in the medium.

Henceforth, the term time-domain sensitivity kernel is used to denote time-domain

pressure sensitivity for a particular time, usually the peak of an arrival, to sound

speed perturbations.
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Using the appropriate source function S(ω), and applying the inverse Fourier

transform to eq. 2.11 will give the time-domain sensitivity kernels for point-to-point

and time-reversal transmissions,

Kpp(t) =
2

(4π)2c3R1R2

∫ ∞
∞
−ω2eiω(T1+T2−t)dω =

1

(4π)2c3R1R2

δ′′(T1 + T2 − t)

Ktr(t) =
2

(4π)2c3R1R2

∫ ∞
∞
−ω2eiω(T1+T2−T−t)dω =

1

(4π)2c3R1R2

δ′′(T1 + T2 − T − t)

(2.13)

where δ(.) is the Dirac delta function and ′ denotes its time derivative, T1 = R1/c

and T2 = R2/c. The notation has been simplified to drop the explicit dependence

of R1, R2, T1 and T2 on x, y, z. Eq. 2.13 for the time-domain pressure sensitiv-

ity kernels is similar to what was derived with respect to travel-time sensitivity

kernels. [14]

Evaluating the sensitivity kernels at the respective arrival times will result

in,

Kpp(t = T ) =
2

(4π)2c3R1R2

δ′′(T1 + T2 − T )

Ktr(t = 0) =
2

(4π)2c3R1R2

δ′′(T1 + T2 − T ) (2.14)

Thus, in the trivial case of a point-to-point transmission in free space, both time-

reversal and a one-way transmission have identical pressure sensitivities.

In a finite frequency, finite bandwidth case, the infinite bandwidth Dirac

delta function is replaced by a sin(x)
x

(sinc) form where the argument of the sinc

function is given by T1 + T2 − T . As a result, the sensitivity kernel in eq. 2.14

can be approximated by the second derivative of the sinc function. This gives

rise to a pattern in the range-depth space marked by lines over which T1 + T2 is

constant, which is the broadband equivalent of the lines of constant phase in a

single frequency Fresnel interference pattern.

2.3.2 Numerical results

A simple way to test the sensitivity kernels (eq. 2.8) from previous sections

is to conduct numerical simulations involving acoustic propagation in free space
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where there are sound speed anomalies δc(x, z) in the medium between source and

receiver.[14]

Figure 2.1: Computational geometry for free space sensitivity kernels

The scenario studied involves a two-dimensional area, 4000 m in length and

100 m in depth. While the theory developed here applies to three-dimensional ge-

ometries, the results are more easily visualized by integrating the three-dimensional

pressure sensitivity kernel along the horizontal cross-range dimension (eq. 2.12).

It was shown[22] that three-dimensional scattering effects become important only

when the Fresnel width approaches and exceeds the cross-range coherence length

of the sound speed perturbations. This is because, under such a scenario, out-of-

plane scattering becomes important, which cannot be accounted for by 2-D models.

As shown in the next section, the Fresnel width for pressure sensitivity kernels in

the free space scenario considered is approximately 20 m. The cross-range scale

for sound speed perturbations was assumed to be larger than 30 m, thus satisfying

the criterion under which a two-dimensional example is sufficient to yield realistic

results. As a result, it is possible to work in two dimensions by using sensitiv-

ity kernels that are integrated in the horizontal cross-range dimension. There are

10 transmit transducers spanning depths 15 m to 90 m. The receive transducer
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is at a range of 4000 m and at a depth of 50 m. The background sound speed

is assumed to be 1500 ms−1. The transducers operate at a central frequency of

3.5 kHz (λC = 0.4 m) with a bandwidth of 128 Hz. These values are chosen to

roughly reflect those used in recent ocean acoustics experiments. Fig. 2.1 shows

the computational geometry employed to illustrate sensitivity kernels in free space.

The size of each grid cell is dx = 30 m by dz = 2 m. Sensitivity kernels are nu-

merically integrated over three-dimensions for each grid cell. The size of the grid

cell is representative of spatial coherence scales of sound speed perturbations in

the ocean.[23]

Broadband Green’s functions were calculated from each source to the do-

main and from the receiver to the domain (a finely sampled three-dimensional grid

cell), over the 128 Hz bandwidth centered around 3.5 kHz, using a frequency step

of 1 Hz. The product of the two Green’s functions is then numerically integrated

over each grid cell. This allows for the calculation of the frequency-domain sensitiv-

ity kernel according to eq. 2.12. An FFT is then applied to the frequency-domain

sensitivity kernels at each grid point, which results in a time-series of sensitivity

for each cell. For each cell, the value of the sensitivity time-series at the time of an

unperturbed arrival is the time-domain pressure sensitivity for the arrival. This

may be expressed as

K(t) =

∫ ∞
−∞

M(ω)S(ω)e−iωtdω (2.15)

For a one-way point-to-point transmission, M(ω) = M i
pp(ω), S(ω) = 1 and t =

R/c. For a broadside transmission, M(ω) =
∑N

i=1M
i
pp(ω), S(ω) = 1 and t = R/c.

For a time-reversal mirror, M(ω) =
∑N

i=1M
i
pp(ω), S(ω) = G∗si(ω) and t = 0. The

top left panel in Fig. 2.2 shows the time-domain pressure sensitivity kernels for the

main (only) arrival, for one-way point-to-point transmissions between a source at

50 m and a receive element at 50 m depth, at a range of 4 km. The structure of the

sensitivity map shows an approximate Fresnel-zone behavior with an oscillatory

structure. [14] The significance of the Fresnel zones is that within each zone, the

phase difference between the interfering Green’s functions is less than π. While

the Fresnel zone is a single-frequency concept, the time-domain analogue, called

the ’zone of influence’ [24] is a weighted average of many single-frequency Fresnel
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interference patterns. As the central frequency increases, the width of the zone

of influence becomes smaller as the propagation becomes more ray-like. As the

bandwidth increases, the higher order Fresnel zones of different frequencies begin

to destructively interfere, and only the first zone of influence is discernible. The

width of the central lobe of the kernel is approximately the same as that of the

first Fresnel zone at the central frequency, given by [25]

RF (r) =

√
r(R− r)c

fR
(2.16)

where R is the source-receiver distance, f is the central frequency of the signal,

and c is the sound speed. Taking R = 4000 m, r = 2000 m, c = 1500 m/s and

f = 3500 Hz, gives RF = 20.7 m, which is consistent with the observed value of

approximately 20 m in Fig. 2.2. As ω → ∞, RF (r) → 0, and the wave-theoretic

sensitivity kernel becomes the ray-theoretic kernel. The sensitivity on the source-

receiver path is non-zero, which is different from 3-D travel-time sensitivity kernels

which have zero sensitivity along the ray path. In seismic literature,[11] 3-D travel-

time sensitivity kernels are often referred to as ’banana-doughnut’ kernels with the

’banana’ shape arising from the shape of the kernel as a result of refraction of the

ray path, and the ’doughnut’ referring to the region of zero sensitivity along the

ray path. The non-zero sensitivity along the ray path has also been observed for 2-

D travel-time kernels.[26] Because the 2-D kernel is obtained from the cross-range

averaging of the 3-D kernel, the 2-D kernel has non-zero sensitivity along the ray

path.

With an understanding of the pressure sensitivity kernels in place, it is now

possible to study the effect of time-reversal on the sensitivity kernel. Any reduction

in sensitivity obtained through time-reversal [27] may be thought of as a two-part

process. First, there is the reduction in sensitivity, if any, obtained through the

use of a time-reversed Green’s function as a source function. Second, there is the

effect of using an array of sources, which involves a phased sum of several one-

way point-to-point kernels such as shown in Fig. 2.2. Thus, when studying the

effect of time-reversal on sensitivity, it is helpful to break up the problem into a

time-reversal part followed by an array gain part, or vice versa.
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Figure 2.2: Time domain sensitivity kernels (10−5µPa s m−4) evaluated at the
peak of the arrival for: Top Left Point-point one-way, Top Right Array-to-point
one-way (broadside) , Bottom Left Array-to-point time-reversal (time-reversal
mirror). Receiver is on the right hand side of each plot, at a depth of 50 m.

The top right, and bottom panels in Fig. 2.2 show sensitivity, in the time-

domain, for one-way and time-reversal transmissions involving an array transmit-

ting to a single receiver. In the case of time-reversal, the power of the time-reversed

Green’s function has been normalized to have the same total power as the uniform

source function used in a one-way transmission. Since the sensitivity kernels for the

array-to-point kernels are a sum of individual point-to-point kernels, the array-to-

point kernels have been divided by the number of sources. The broadside sensitivity

kernel is computed by first summing the individual frequency-domain sensitivity

kernels for each source, followed by evaluating the broadside time-domain sensi-

tivity kernel at the time of arrival of a pulse from a source at 50 m depth. This
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is because the received signal for a broadside transmission consists of just a single

arrival corresponding to a source at 50 m depth since the difference in range be-

tween the various sources and the receiver is insufficient to produce several distinct

direct arrivals. If there were indeed distinct arrivals, the broadside time domain

sensitivity kernel would have to be evaluated at each of the arrival times.

The r.m.s values of sensitivities for the various schemes are listed in Ta-

ble 2.1, divided by the r.m.s value for a one-way transmission. The r.m.s values

are divided by the peak amplitude of the arrival for the one-way transmissions, or

the peak amplitude of the focal spot for time-reversal. The statistical significance

of using the r.m.s of the sensitivity kernel follows from eq. 2.7. For uncorrelated

perturbations, the r.m.s of the sensitivity map is shorthand for the r.m.s of the

expected pressure perturbation.

Point-to-point time-reversal is identical to a one-way transmission in terms

of sensitivity (eq. 2.14). The use of time-reversal shows a reduction in sensitivity

in free space only when used along with an array. For an array in free space,

time-reversal results in a phasing of transmissions from different sources such that

the peak of all arrivals occurs at the same time. The phased addition of sev-

eral point-to-point sensitivity kernels results in a net cancellation of the oscillating

Fresnel-like zones of influence. A given sound speed perturbation will be in the

zone of influence of sensitivity kernels for multiple paths. When these paths are

phased such that they all arrive at the same time, then evaluating the sensitivity

at that time corresponds to an average of all the sensitivity kernels. Due to over-

lapping positive and negative regions of sensitivity, there is an overall reduction

in sensitivity. As frequencies get larger, there are two effects that need to be con-

sidered. First, increasing the bandwidth results in the addition of kernels for each

frequency, and this smears out the higher order zones of influence which reduces

the overall r.m.s sensitivity. At the same time, there is less overlap of sensitivity

kernels for the multiple paths. Second, increasing the central frequency results in

a larger pressure sensitivity due to larger phase shifts. The combined effect is that

time-reversal involving higher frequencies has a greater sensitivity to sound speed

perturbations, as has been experimentally observed.[5]
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In the example shown, the time-reversal mirror reduces the sensitivity of

the peak magnitude to about two-thirds that of a broadside transmission. While

the broadside transmission in this example also results in a single arrival, the

alignment of the different peaks is not perfect, and the sensitivity of the peak of

the arrival is larger than that for time-reversal.

Table 2.1: The r.m.s values for one-way and time-reversal free space sensitivity
kernels, normalized to the sensitivity for a one-way transmission

One-way Time-reversal Broadside Time-reversal mirror
(point-to-point) (point-to-point) (array-to-point) (array-to-point)

1 1 0.48 0.33

2.4 Pekeris waveguide sensitivity kernels

The complex amplitude Green’s function in a two-dimensional Pekeris waveg-

uide for a source located at (rs, zs) and a receiver at (r, z) is given by [28]

G(r, z) =
i

4ρ(zs)

M∑
m=1

ψm(zs)ψm(z)H
(1)
0 (krmr) (2.17)

For mode m, krm is the horizontal wavenumber, ψm is the vertical mode shape and

H
(1)
0 (krmr) is the Hankel function of the first kind. Eq. 2.17, along with eq. 2.8,

will give the frequency-domain pressure sensitivity kernel for a Pekeris waveguide.

The waveguide geometry for which the Pekeris sensitivity kernels are computed has

dimensions identical to Fig.2.1, with the surrounding absorbing medium replaced

by a pressure release surface and an absorbing bottom. The density and sound

speed in the bottom are 1800 kg/m3 and 1800 m/s respectively. While it was

relatively straightforward to compute closed form sensitivity kernels for free space

propagation, the same is not true for the Pekeris waveguide. However, it can now

be expected that multipath propagation will result in differences between time-

reversal and one-way transmissions, as opposed to free space propagation where

the two are identical for a point-to-point application.

Frequency-domain pressure sensitivity kernels are computed every 1 Hz

over a bandwidth of 1 kHz with a central frequency of 3.5 kHz. The two-

dimensional grid over which the sensitivity kernels are computed is sampled well
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above the spatial Nyquist frequency in order to avoid spatial aliasing, with a depth

step of dz = 0.1 m and a range step of dr = 10 m. Unlike the 3-D free space sen-

sitivity kernels, which were averaged over the cross-range dimension, no averaging

is needed for the 2-D Pekeris waveguide example, since the Green’s function in

eq. 2.17 is specifically defined for a 2-D geometry. Green’s functions for this exam-

ple are on the order of 10−5, as a result of which sensitivity kernels will be on the

order of 10−10. In order to avoid plotting these extremely small values, Green’s

functions are scaled up by 105.

An inverse FFT of the frequency-domain sensitivity kernels in eq. 2.8 will

result in a time series for each grid point. This time series is then sampled at

times corresponding to the time of arrival of the various multipaths for a pulse

propagating in the unperturbed medium. This will result in a number of sensitivity

kernels, each of which corresponds to a particular multipath arrival. The resulting

sensitivity kernels are broadband, and centered around the carrier frequency.

Fig. 2.3 shows the time-domain sensitivity kernels for a source located at

a depth of 50 m and a receiver located at the same depth, but 1000 m away

in range. The same Fresnel-like interference pattern as free space propagation

is seen, centered around each ray path. The sensitivity kernel for the bottom

bounce is seen to have the opposite polarity compared to the sensitivity kernel for

the surface bounce. This is a result of a negative reflection coefficient associated

with the surface bounce. Another feature of the sensitivity kernels in Fig. 2.3

is the reduction in sensitivity as the launch angle gets steeper. This is a direct

consequence of Snell’s law ( cos θ
c

= const, cos θ = kr

k
, dθ
dc
→ 0 as θ → π/2), where

θ is the angle of incidence with respect to the horizontal. As dθ
dc

gets smaller with

an increasing angle of incidence (θ), a reduction in sensitivity (dP
dc

) follows.
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Figure 2.3: Time domain sensitivity kernels (10−10 µPa s m−4) for one-way trans-
mission, for a source at 50 m and receiver 1000 m away at a depth of 50 m. Top:
Envelope of Green’s function. A,B,C are the individual multipaths corresponding
to direct path, single surface/bottom bounce, double bounce off the surface and
bottom, Bottom: Time-domain sensitivity kernel for each arrival .
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Figure 2.4: Time domain sensitivity kernels (10−10 µPa s m−4) for the peak of a
point-to-point time-reversal focal spot, for a source at 50 m and receiver 1000 m
away at a depth of 50 m. Top: Pressure envelope of the focal spot, Bottom Time-
domain sensitivity kernel for the focal spot, with the time of arrival in seconds.

Fig. 2.4 shows the time-domain sensitivity kernel for the time-reversal focal

spot, obtained using the time-reversed Green’s function in Fig. 2.3 as a source

transmission. The time-reversed Green’s function is normalized to have unit power.

Time-reversal leads to the different multipath arrivals being phased in a way such

that they all arrive at the same time, resulting in a focal spot. Similarly, time-

reversal results in the sensitivity kernel for the focal spot being a phased sum of

the sensitivity kernels for the peak of each arrival. Table 2.2 lists r.m.s sensitivities

normalized by the r.m.s sensitivity of the direct path. The peak amplitude of the

focal spot is different from the peak amplitude of the multipath arrivals. In order to

compare the sensitivity of the focal spot versus that of the individual arrivals, the

different sensitivity kernels are first divided by the peak pressure of the respective

arrival.
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Figure 2.5: Time domain sensitivity kernels (10−10 µPa s m−4) for the peak of the
focal spot for a time-reversal mirror. There are 10 sources located between 30 m
and 75 m and receiver 1000 m away at a depth of 50 m. Top: Pressure envelope
of focal spot, Bottom: Time-domain sensitivity kernel for the focal spot, with the
time-of-arrival in seconds.

Next, the use of an array (time-reversal mirror) is investigated, and the

resulting sensitivity map is shown in Fig. 2.5. Ten sources are employed in the same

configuration as shown in Fig. 2.1. The resulting sensitivity kernels are divided

by the number of sources, in order to make a comparison with Figs. 2.3-2.4. It

is seen that the sensitivity kernel for a time-reversal mirror is a superposition of

sensitivity kernels corresponding to different sources, each of which transmits a

time-reversed Green’s function.

As seen in Table II, the use of a time-reversal mirror results in a reduction by

0.34 in sensitivity compared to a single-source time-reversed transmission (point-

to-point time-reversal). This is caused by the averaging of the sensitivity kernels

corresponding to the different sources in a manner similar to that of the free space
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Table 2.2: The r.m.s sensitivities for one-way, time-reversal and a time-reversal
mirror in a Pekeris waveguide, normalized to pressure sensitivity on the direct
path.

One-way Time-reversal Time-reversal mirror
(point-to-point) (point-to-point) (array-to-point)

Direct path 1
0.71 0.37One bounce 0.69

Two bounces 0.52

example in Sec. III, in addition to averaging over the multipath arrivals.

2.5 Source function optimization

As mentioned in Section II, expressing the array-to-point sensitivity kernel

with the source transmissions as adjustable parameters allows for optimization of

the source signal with regard to the sensitivity of the received signal to sound speed

perturbations. Other constraints on the source signal can be added, resulting in

a joint optimization problem. In this section, the optimization problem is posed

in terms of obtaining a spatio-temporal (depth and time) focal spot, while at

the same time minimizing the effect of fluctuations. The optimization is applied

in the frequency domain since the pressure perturbations caused by sound speed

fluctuations (eq. 2.7) is more simply expressed in the frequency domain. As a

result of the optimization, the quality of the focal spot (mainlobe intensity, width,

mainlobe to sidelobe ratio) may be traded off for increased stability.[5]

2.5.1 Minimizing pressure perturbations

In order to state the optimization problem in matrix form, the frequency

domain, time domain and medium are discretized. To be conceptually simple,

the medium is parameterized by a two-dimensional grid in range and depth. Thus,

sound speed perturbations of the medium can be specified by the matrix ∆c, where

the rows correspond to depth and columns to range. Similarly, the frequency-

domain point-to-point sensitivity kernel (eq. 2.7) over the medium can be expressed
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as a matrix K(ω). Next, in order to express the integral in eq. 2.7 as the dot product

of two vectors, the Nz × Nx two-dimensional matrices ∆c and K(ω) are written

as (NzNx) × 1 vectors after stacking the columns. Using the vec{·} notation to

denote a vectorized (stacked columns) matrix, eq. 2.7 may be written as

∆P (xr, zr;ω) = vec{Kap(ω)}Tvec{∆c}∆x∆z (2.18)

where the superscript (·)T denotes matrix transpose. The area element (volume

element for 3-D) ∆x∆z may be absorbed into ∆c or Kap(ω) so the integral becomes

a dot product. The two-dimensional (Nz × Nx) matrix Kap is obtained by the

multiplication of the three-dimensional (Nz×Nx×Ns) matrix Mpp and the Ns×1

source vector S(ω). The multiplication can also be presented in stacked form,

vec{Kap(ω)} = vec{Mpp(ω)}S(ω) (2.19)

where vec{Mpp(ω)} is the (NzNx)×Ns matrix obtained from stacking the first and

second dimension of Mpp. Eq. 2.19 will yield the (NzNx)×1 vector vec{Kap} which

expresses how the arrival at the receiver is sensitive to medium perturbations.

The received pressure perturbation (eq. 2.18) can now be expressed as

∆P (ω) = S(ω)Tvec{Mpp(ω)}Tvec{∆c} (2.20)

The portion of the optimization problem involving the minimization of the

received pressure perturbation can now be conveniently stated in terms of a cost

function component

J1(ω) = < |∆P |2 >

= S(ω)H vec{Mpp(ω)}H < vec{∆c}vec{∆c}T > vec{Mpp(ω)} S(ω)

= S(ω)H vec{Mpp(ω)}H Cdc vec{Mpp(ω)} S(ω)

= S(ω)H Cmdc S(ω) (2.21)

where Cdc is the sound speed perturbation covariance matrix. The superscript

(·)H denotes matrix complex conjugate transpose (Hermitian). Cmdc is the Ns ×
Ns covariance matrix of the Born-approximation perturbed Green’s functions at

frequency ω between an array of sources and a single receiver. So element ij of
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Cmdc is the covariance between the pressure perturbation at the receiver from a

transmission from source i and the pressure perturbation at the receiver from a

transmission from source j. J1 is not minimized separately, but is done so as part

of the joint optimization in order to avoid the trivial case of S(ω) = 0.

The cost function component (eq. 2.21) does not take into account time and

range shifts in the focal spot that may occur, caused for example, by internal wave

induced sound speed fluctuations.[5] It also requires each realization of the focal

spot to be stable, without addressing the ensemble average of focal spots, which

was found to have a high stability.[6]

The cost function is computed independently for each frequency in the

bandwidth of interest. This has been done in order to be consistent with the

formulation of the inverse filter[18] which is more conveniently described on a

single frequency basis. While the optimization can be done across all frequencies

simultaneously, doing it on a frequency-by-frequency basis is a stronger constraint.

2.5.2 Obtaining a focal spot

The other part of the optimization is the choice of source function that will

yield a focal spot. It was shown by Tanter et. al.[18] that while time-reversal only

optimizes the pressure amplitude at the focus, the inverse filter adds constraints

on the field around the focus, and is thus able to impose a desired sidelobe level

or mainlobe width. Since this is a more general optimization problem, it is clearer

to develop the optimized source function as a robust version of the inverse filter

rather than as a robust version of time-reversal.

The ideal focal spot is defined as a delta function in depth and time at the

range of the receiver,

u(t, z) = δ(z − zr)δ(t− t0) (2.22)

In the frequency domain, u(t, z) is written as the Np × 1 vector U(ω), which is

the desired focal spot, defined over Np depths. The problem now becomes one of

choosing S(ω) to produce a received pressure field at a set of Np depths that is as

close to a delta function as possible, given a finite bandwidth. This may be stated
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in the frequency domain as

U(ω) = G(ω)S(ω) + ∆G(ω)S(ω) + r (2.23)

G is a Np×Ns matrix of unperturbed Green’s functions from each source to each

of the Np depths at the range of the receiver. ∆G is the (unknown) perturbation

to the Green’s function due to the perturbed sound speed field. In the absence of

knowledge about ∆G, it is assumed that ∆GS is a random variable, which can be

included as part of the error term, r. The misfit vector r is a Nz×1 random vector

which is assumed to be jointly normally (Gaussian) distributed with prior joint

probability density function (PDF) N (0,Cr). Eq. 2.23 then reduces to a linear

model

U(ω) = G(ω)S(ω) + r (2.24)

While a full-depth representation is needed in eq. 2.24 in order to obtain

a spatio-temporal focal spot, such a representation is not needed in the first cost

function (eq. 2.21) where the emphasis is on minimizing received pressure sensi-

tivity to fluctuations only at the receiver depth. Multiple receiver depths can be

treated by adding terms to the cost function corresponding to other depths.

A Bayesian approach is now adopted to find the optimum estimator for

S(ω) that will satisfy eq. 2.24. The Ns × 1 vector of source excitations S(ω) is

treated as an unknown random variable to be estimated. It is assumed to be

jointly normally distributed with PDF N (0,CS) . CS expresses constraints on

the size of S and the correlation between the signals from different sources. For

example, assuming CS = βI means that the signals from different sources can be

chosen independently, but the power of each source is constrained to be usually less

than 2β. Assuming Cr = αI means a uniformly distributed independent Gaussian

misfit at each depth, with variance α. This is a convenient assumption, but it may

not be accurate, since the minimum width of the focal spot is determined by the

multipaths available for focusing.

Solving eq. 2.24 is equivalent to minimizing the penalty function (where

the penalty is the difference between the delta function and the focal spot at the

receiver),

J2 = rHCr
−1r + SHCS

−1S (2.25)
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J2 may be recognized as the negative of log likelihood function for S given U. The

penalty function is affected by the number of depths at which the misfit vector is

enforced, where a large number of closely spaced depths results in a larger penalty

function. Minimizing J2 with respect to S will give the maximum a posteriori

estimator, which for the Gaussian-distributed case considered, is equivalent to the

minimum mean square estimator,[29]

Ŝ(ω) = (C−1
S + GHC−1

r G)−1GHC−1
r U (2.26)

The above estimator, with Cr = αI and CS = βI gives a generalized inverse

filter[10, 30] which does not require G to be full-rank,

Ŝ(ω) = (GHG +
α

β
I)−1GHU (2.27)

If the only concern is to obtain a temporal focal spot at a single depth (in which

case U, r and GGH are scalars), it is simpler to solve eq. 2.26 in its equivalent

form of,

Ŝ(ω) = CSGH(GCSGH + Cr)
−1U (2.28)

If CS = βI, eq. 2.28 reduces to a scalar times GHU (phase conjugation). This

shows that for purely temporal focusing, time-reversal and the inverse filter are

the same.

2.5.3 Joint optimization

Adding the minimum sensitivity cost function in eq. 2.21 to the inverse

filter cost function in eq. 2.25 gives

J3 = SHCmdcS + SHCS
−1S + rHCr

−1r (2.29)

The source function that will minimize J3 with respect to S has a form similar to

eq. 2.26 except for the added sensitivity terms, and is given by,

Ŝ(ω) = (C−1
S + Cmdc + GHC−1

r G)−1GHC−1
r U (2.30)

If Cr = αI and CS = βI, then eq. 2.30 yields,

Ŝ(ω) = (
α

β
I + αCmdc + GHG)−1GHU (2.31)
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A few observations may be made regarding the optimized source function obtained

in eq. 2.31. The ratio α
β

is misfit to transmit power ratio. Setting α = 0 (no error

tolerated in the focal spot criterion) yields the inverse filter. Thus, eq. 2.31 is a

modification of the generalized inverse filter, with a stability term (αCmdc) that

takes into account knowledge of the medium statistics and the sensitivity of the

Green’s function to sound speed perturbations (Cmdc = vec{M}T Cdc vec{M}).
In a medium with uncorrelated perturbations or extremely short scale inhomo-

geneities, pressure perturbations will tend to be uncorrelated between sources, so

Cmdc will tend to be an identity matrix, and eq. 2.31 tends to the regularized

inverse filter. Letting β → ∞ (no constraint on transmit power) will yield an al-

ternatively regularized inverse filter. Finally, setting α to large values will result in

increased stability at the cost of degradation of the focal spot because α reflects the

allowed difference between the observed focal spot and the desired delta-function

like focal spot.

It is useful to look at the form of eq. 2.31 when only a temporal focus

is desired (no focusing in depth). In such a case, GCr
−1GH is a scalar, and

an equivalent form of eq. 2.31, similar to eq. 2.28, may be obtained by writing

P−1 ≡ α
β
I + αCmdc. The optimized source functions are then given by

Ŝ(ω) = PGH(GPGH + Cr)
−1U

= λPGHU (2.32)

It is thus seen that the optimized solution for purely temporal focusing reduces to

the matrix P times the phase conjugated Green’s function. If P is a scaled identity

matrix, then this is again time-reversal.

As seen in eq. 2.31, the optimized source function requires rather complete

knowledge of the medium in order to compute the sensitivity kernels, in addition

to knowledge of statistics of sound speed perturbations. If these were available,

then the optimized source function can be expected to perform better than time-

reversal but it must be kept in mind that an attractive feature of time-reversal is

that only the Green’s function between source and receiver need be known.
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2.6 Optimization applied to a Pekeris waveguide

Studies of the optimized source function with focusing in both time and

depth are conducted for three scenarios involving different spatial structures of

sound speed perturbations in a Pekeris waveguide. For each case, three trans-

mission schemes are considered: time-reversal, the inverse filter (eq. 2.27), and

optimized source function (eq. 2.31). The dimensions of the waveguide and num-

ber of sources are the same as in Sec. IV. Sound speed perturbations are assumed

to be constant over a cell size of 10 m in range, 1 m in depth, and a long distance in

the horizontal cross-range dimension. The sound speed perturbation in each cell is

modeled as a Gaussian-distributed random variable. Changes in the perturbation

variance with depth, and horizontal correlation scales of different lengths are intro-

duced while comparing time-reversal with the optimized source shading function.

In the first case, there is no correlation between perturbations in different cells.

The second case involves a channel of zero variance in sound speed perturbations

between source and receiver, while the third case has a long decorrelation scale in

both range and depth for sound speed perturbations.

For the given medium, Green’s functions were on the order of 10−4, resulting

in sensitivities on the order of 10−8. In order to avoid plotting these extremely low

values, the Green’s functions were scaled up by 104, resulting in sensitivities on

the order of 1. The scaling used here is different from that in Sec. IV due to the

fact that the sensitivity kernels in this section have been summed over 10 m× 1 m

cells in depth in order to deal with more manageable matrices.

Cost functions are calculated for the various perturbation scenarios, where

the cost function for sensitivity, J1(ω) is computed using eq. 2.21, and the cost func-

tion for the sharpness of the focal spot, J2(ω), is computed according to eq. 2.25,

with the ideal focal spot specified at 11 equally spaced depths from 25 m to 75 m.

Recognizing that the inverse filter produces the best achievable focal spot for a

given medium, the ideal focal spot (U(ω) in eq. 2.24) is chosen such that the focal

spot cost function J IF2 (ω) = 0 for the unregularized inverse filter. The value of α

is now chosen such that the focal spot cost function for time-reversal JTR2 (ω) = 1,

for all frequencies. A value of 1 is chosen for the convenience of plotting, and can



41

be set to a different value in a practical problem. Next, β can be varied to yield

a focal spot cost function that varies between 0 and 1, depending on the amount

of tradeoff desired between quality of focal spot and sensitivity to medium pertur-

bations. For all case studies in this section, β = 50. The values of α and β will

depend on the specific scaling used for the Green’s function.

Sensitivity kernels and source shading functions will be the same for time-

reversal and the inverse filter for all three cases since they are ignorant of the

presence or absence of structure in the sound speed perturbations. As a result,

source shading functions and sensitivity kernels for time-reversal and the inverse

filter are only shown for the first case where there is no structure in sound speed

perturbations. The received signals for time-reversal and the inverse filter are also

the same for different cases and hence are only shown for the first case. Finally, as

seen in Table III, since the focal spot cost function is very similar for the inverse

filter and the optimized source function, this is also not shown for the last two

case studies. Sensitivity cost functions for the three transmission schemes (time-

reversal, inverse filter and optimized source function), however, will be different for

each case considered due to differences in the Cmdc term for each case (eq. 2.21).

The range of values for the sensitivity cost function depends on the specific Green’s

functions considered and the statistics of the medium. The value of the sensitivity

cost function also depends on the number of points (and spacing) at which the

sensitivity kernel is evaluated.

The performance of time-reversal, the inverse filter (eq. 2.27) and the opti-

mized source function under various sound speed perturbation scenarios are sum-

marized in Table 2.3. The use of an inverse filter imposes explicit constraints on

sidelobe levels in both time and depth.[18] Since the optimized solution is similar

to the inverse filter, in the absence of noise, the focal spot obtained will have lower

sidelobe levels, and hence, a smaller focal spot cost function (eq. 2.25) than time-

reversal. The peak-to-sidelobe ratios for the inverse filter and optimized source

function is about 2 dB greater than that of time-reversal. The focal spot cost

function (Table III) for the inverse filter and the optimized source function is al-

ways about 90% less than that of time-reversal. However, although all three source
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functions are normalized to have the same source power, time-reversal has a higher

peak received power. This is because time-reversal is a matched filter, which is the

optimal solution for maximizing received power, without other constraints.
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Figure 2.6: Performance of time-reversal, the inverse filter and the optimized source
function. Sound speed perturbations are homogeneous, isotropic and uncorrelated
on a 10m x 1m scale. Top left: Transmit signals across depth, Top right:
Received signals, in time and depth, at the focal spot, Bottom left: Pressure
sensitivity kernels (10−4 µPa s m−4) for time-reversal, the inverse filter and the
optimized source function, Bottom right: Cost functions. The focal spot cost
function for time-reversal is fixed to be a constant value of 1.

Fig. 2.6 shows the results of the numerical simulation involving the first

scenario where the sound speed perturbations have the same variance and are

uncorrelated between grid points in both dimensions. The top panels of Fig. 2.6

show the transmit and receive signals for time-reversal and the optimized source
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shading functions. The bottom left panel shows the sensitivity kernels for each

scheme while the bottom right panel shows the cost function metrics over a 1 kHz

bandwidth for time-reversal and the optimized source function. The focal spot

cost function for time-reversal is fixed to be 1, and is not shown in order to show

more clearly the cost functions for the inverse filter and the optimized source

function which are on the order of 0.01. The lack of structure in the sound speed

perturbation results in only a 2.5% difference in sensitivity between the inverse

filter and time-reversal (Table III). However, despite the lack of structure, the

sensitivity cost function for the optimized source function is about 35% less than

that of time-reversal, while the focal spot cost function for both the inverse filter

and optimized source function is about 90% less than that of time-reversal.
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Figure 2.7: Shape of depth-dependent variance of sound speed perturbations. The
sound speed perturbations obtained were used to obtain Fig. 2.8.

Next, structure in the sound speed perturbations is introduced by means of

a region where the variance of the sound speed perturbations drops to zero. The

depth of zero variance is placed at a constant depth of 52 m. The shape of the

depth-dependent variance is shown in Fig. 2.7. The sound speed perturbations,

however, are still uncorrelated between cells. The ratio of transmit power for the

source at 50 m to the average power at other depths for the optimized scheme is

about 100% higher than that for time-reversal, indicating a concentration of power

in the unperturbed region. For this case, the inverse filter is 26% more sensitive to

sound speed perturbations than time-reversal, while the optimized source function
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Figure 2.8: Performance of time-reversal, the inverse filter and the optimized source
function. Sound speed perturbations are homogeneous, isotropic and uncorrelated
on a 10m x 1m scale. The variance of sound speed perturbations reduces to zero
at 52 m as shown in Fig. 2.7. The source shading function and sensitivity kernel
for time-reversal and the inverse filter are identical to those in Fig. 2.6, and have
been omitted. Top left: Optimized transmit signals across depth, Top right:
Received signal in time and depth, near the focal spot, for the optimized source
function, Bottom left: Optimized pressure sensitivity kernel (10−4 µPa s m−4),
Bottom right: Sensitivity cost function. The focal spot cost function is almost
identical to the case in Fig. 2.6.

is about 20% less sensitive compared to time-reversal. The focal spot cost functions

are similar to the previous case.
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Figure 2.9: Performance of time-reversal, the inverse filter and the optimized source
function. Sound speed perturbations have a long decorrelation scale in range (100
m) and depth (100 m). The source shading function and sensitivity kernel for
time-reversal and the inverse filter are identical to those in Fig. 2.6, and have been
omitted. Top left: Optimized transmit signals across depth, Top right: Received
signal, in time and depth, near the focal spot, for the optimized source function,
Bottom left: Optimized pressure sensitivity kernels (10−4 µPa s m−4), Bottom
right: Sensitivity cost function. The focal spot cost function is almost identical
to the case in Fig. 2.6.
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The third study (Fig. 2.9) involves the use of a long (100 m in range, 100 m

in depth) spatial decorrelation scale for the sound speed perturbations. The corre-

lation decays exponentially over 100 m in range and 100 m in depth. The pertur-

bations are still isotropic and homogeneous. This is meant to represent low-mode

internal waves in the ocean. The optimized source function shows significantly

lower sensitivity, with a 98 % reduction (Table 2.3) compared to time-reversal,

while the inverse filter shows a 52% reduction with respect to time-reversal. At

the same time, the quality of the focal spot is similar to that of the inverse filter

in terms of peak-to-sidelobe ratio, although the peak amplitude has been reduced.

Thus, the presence of structure allows the optimized source function to exploit

the knowledge of sound speed perturbations to produce a focal spot that is very

similar to that of the inverse filter, but at the same time considerably less sensitive

to sound speed perturbations than time-reversal (Table III).
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2.7 Conclusions

A pressure sensitivity kernel was developed for the case where an array

of sources transmits to a single receiver. This kernel is extendable to multiple-

input multiple-output scenarios. The Born-approximated sensitivity kernel for the

received pressure was used to provide an explanation for why time-reversal and the

inverse filter are more stable compared to a one-way transmission. In the absence

of multipath, the sensitivity of a time-reversed transmission for a single source-

receiver pair was shown to be identical to a one-way transmission. A reduction in

pressure sensitivity is only obtained through the use of a time-reversal mirror which

results in the coherent addition of the kernels from different sources as opposed

to an incoherent addition in the case of a broadside transmission. Time-reversal

allows for the coherent addition of the kernels corresponding to different paths

arriving at the same time. The presence of multipath has an effect similar to a

time-reversal mirror, with a lowering of sensitivity resulting from the superposition

of the multipath kernels.

The linear (first Born) approximation is only valid when sound speed per-

turbations are very small compared to the background sound speed. Ongoing

simulations, beyond the scope of this paper, show that the Born approximation

for a 1 km by 100 m waveguide is valid for sound speed perturbations up to about

0.2 m/s, for a background sound speed of 1500 m/s. If only the envelope of the

Green’s function is of interest, the range of validity is extended until about 5 m/s.

This is within the range of most internal wave induced sound speed fluctuations in

the ocean. Further, as a result of the volume integral expression for the perturbed

Green’s function, the effect of longer path lengths is to lower the range of sound

speed perturbations for which the linear approximation is valid.

The pressure sensitivity kernel was used to obtain an optimized source shad-

ing function that can be considered an environmentally adaptive version of time-

reversal and the inverse filter. While this optimized source function was almost

identical to the inverse filter when there is no structure in the sound speed pertur-

bation field, the gains are significant in the presence of structure, such as a depth

of zero variance, or a long decorrelation length in the sound speed perturbations.



48

T
ab

le
2.

3:
P

ea
k
-t

o-
si

d
el

ob
e

ra
ti

o
(P

S
R

),
se

n
si

ti
v
it

y
co

st
fu

n
ct

io
n

(J
1
),

an
d

fo
ca

l
sp

ot
co

st
fu

n
ct

io
n

(J
2
)

fo
r

ti
m

e-
re

ve
rs

al
(T

R
),

in
ve

rs
e

fi
lt

er
(I

F
),

an
d

th
e

op
ti

m
iz

ed
so

u
rc

e
fu

n
ct

io
n

(o
p
t.

).
C

os
t

fu
n
ct

io
n
s

ar
e

%
re

d
u
ct

io
n

w
it

h
re

sp
ec

t
to

ti
m

e-
re

ve
rs

al
,

av
er

ag
ed

ov
er

1
k
H

z.
’N

o
st

ru
ct

u
re

’
co

rr
es

p
on

d
s

to
u
n
co

rr
el

at
ed

ra
n
d
om

G
au

ss
ia

n
so

u
n
d

sp
ee

d
p

er
tu

rb
at

io
n
s.

’C
h
an

n
el

’
d
en

ot
es

a
ch

an
n
el

of
ze

ro
va

ri
an

ce
in

so
u
n
d

sp
ee

d
p

er
tu

rb
at

io
n
s

at
a

co
n
st

an
t

d
ep

th
of

52
m

.
’S

tr
u
ct

u
re

’
d
en

ot
es

a
lo

n
g

d
ep

th
an

d
ra

n
ge

d
ec

or
re

la
ti

on
sc

al
e

fo
r

so
u
n
d

sp
ee

d
p

er
tu

rb
at

io
n
s.

P
S
R

(d
B

)
J

1
J

2

T
R

IF
op

t.
IF

op
t.

IF
op

t.
N

o
st

ru
ct

u
re

31
.1

7
32
.9

5
32
.1

4
−

2.
5%

34
.1

5%
99
.9

%
99
.8

%
C

h
an

n
el

31
.1

7
32
.9

5
33
.3

3
−

26
.5

8%
19
.9

%
99
.9

%
99
.8

%
S
tr

u
ct

u
re

31
.1

7
32
.9

5
32
.7

7
52
.7

3%
98
.2

%
99
.9

%
99
.8

%



49

2.8 Acknowledgment

This work was supported by the Office of Naval Research under grants

N00014-04-1-0360, N00014-05-1-0263 and N00014-07-1-0739.

The text in this chapter is in full a reprint of the material as it appears in

Kaustubha Raghukumar, Bruce Cornuelle, William Hodgkiss, William Kuperman,

“Pressure sensitivity kernels applied to time-reversal acoustics”, J. Acoustic Soc.

Am., Vol. 124, Issue 1, pp. 98-112, 2008.



Bibliography

[1] M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux, M. Tanter, J. L.
Thomas, and F. Wu. Time-reversed acoustics. Rep. Prog. Phys., 63:1933–
1965, 2000.

[2] G. F. Edelmann, T. Akal, W. S. Hodgkiss, S. Kim, W. A. Kuperman, and
H. C. Song. An initial demonstration of underwater acoustic communication
using time-reversal. IEEE J. Oceanic Engineering, 27:602–608, 2002.

[3] H. Nguyen, J. Andersen, and G. Pederson. The potential use of time-reversal
techniques in multiple element antenna systems. IEEE commun. Lett., 9:40–
42, 2005.

[4] W. S. Hodgkiss, H. C. Song, W. A. Kuperman, T. Akal, C. Ferla, and D. R.
Jackson. A long-range and variable focus phase-conjugation experiment in
shallow water. J. Acoustic Soc. Am., 105:1597–1604, 1999.

[5] S. Kim, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, and G. F. Edelmann.
Robust time-reversal focusing in the ocean. J. Acoustic Soc. Am., 114:145–
157, 2001.

[6] D. R. Dowling and D. R. Jackson. Narrow-band performance of phase-
conjugate arrays in dynamic random media. J. Acoustic Soc. Am., 91:3257–
3277, 1992.

[7] G. Papanicolaou, L. Rhyzhik, and K. Solna. Statistical stability in time re-
versal. SIAM J. Appl. Math, 64:1133–1155, 2004.

[8] G. Montaldo, G. Lerosey, A. Derode, A. Tourin, J. Rosny, and M. Fink.
Telecommunication in a disordered environment with iterative time reversal.
Waves in Random Media, 14:287–302, 2004.

[9] M. Stojanovic. Retrofocussing techniques for high rate acoustic communica-
tions. J. Acoustic Soc. Am., 117:1173–1185, 2005.

[10] M. Tanter, J.-F. Aubry, J. Gerber, J.-L. Thomas, and M. Fink. Optimal
focussing by spatio-temporal inverse filter. I. Basic principles. J. Acous-
tic Soc. Am., 110:37–47, 2001.

50



51

[11] H. Marquering, G. Nolet, and F. A. Dahlen. Three-dimensional waveform
sensitivity kernels. Geophs. J. Int., 132:521–534, 1998.

[12] F. A. Dahlen, S. H. Hung, and Guust Nolet. Frechét kernels for finite-
frequency traveltimes-I. Theory. Geophs. J. Int., 141:157–174, 2000.

[13] F. A. Dahlen, S. H. Hung, and Guust Nolet. Frechét kernels for finite-
frequency traveltimes-II. Examples. Geophs. J. Int., 141:175–1203, 2000.

[14] E. K. Skarsoulis and B. D. Cornuelle. Travel-time sensitivity kernels in ocean
acoustic tomography. J. Acoustic Soc. Am., 116:227–238, 2004.

[15] B. Sarkar, B. Cornuelle, and W. A. Kuperman. Estimating sound-speed
perturbations with full-wave environmental sensitivity kernels. J. Acous-
tic Soc. Am., 119:3246, 2006.

[16] P. Hursky, M. B. Porter, B. D. Cornuelle, W. S. Hodgkiss, and W. A. Ku-
perman. Adjoint modelling for acoustic inversion. J. Acoustic Soc. Am.,
115:607–619, 2004.

[17] P. Roux and M. Fink. Time reversal in a waveguide: Study of the temporal
and spatial focussing. J. Acoustic Soc. Am., 107:2418–2429, 2000.

[18] M. Tanter, J. L. Thomas, and M. Fink. Time-reversal and the inverse filter.
J. Acoustic Soc. Am., 108:223–234, 2000.

[19] M. Born. Quantum mechanics of impact processes. Z. Phys., 38:803–827,
1926.

[20] J. R. Taylor. Scattering Theory. Wiley, New York, 1972.

[21] E. K. Skarsoulis, G. A. Athanassoulis, and U. Send. Ocean acoustic tomog-
raphy based on peak arrivals. J. Acoustic Soc. Am., 100:797–813, 1996.

[22] T. Chen, P. Ratilal, and N. C. Makris. Mean and variance of the forward field
propagated through three-dimensional random internal waves in a continental-
shelf waveguide. J. Acoustic Soc. Am., 118:3560–3574, 2005.

[23] C. Garret and W. Munk. Space-time scales of internal waves. Geophysical
Fluid Dynamics, 2:225–264, 1972.

[24] M. Bruhl, G. J. O. Vermeer, and M. Kiehn. Fresnel zones for broadband data.
Geophysics, 61:600–604, 1996.

[25] J. Pearce and D. Mittleman. Defining the fresnel zone for broadband radiation.
Physical Review E, 66:056602/1–4, 2002.



52

[26] B. Cornuelle, M. Dzieciuch, and E. Skarsoulis. Wave-theoretic kernels for
long-range ocean travel-time measurement. J. Acoustic Soc. Am., 119:3248,
2006.

[27] W. A. Kuperman, W. S. Hodgkiss, H. C. Song, T. Akal, C. Ferla, and D. R.
Jackson. Phase conjugation in the ocean: Experimental demonstration of an
acoustic time-reversal mirror. J. Acoustic Soc. Am., 103:25–40, 1998.

[28] F. B. Jensen, W. A. Kuperman, and M. B. Porter aand H. Schmidt. Com-
putational Ocean Acoustics. American Institute of Physics, Woodbury, NY,
1994.

[29] S. M. Kay. Fundamentals of statistical signal processing - Estimation theory.
Prentice Hall, New Jersey, 1993, Ch. 10.

[30] W. J. Higley, P. Roux, and W. A. Kuperman. Relationship between
time-reversal and linear equalization in digital communications. J. Acous-
tic Soc. Am., 120:35–37, 2006.



Chapter 3

Experimental Demonstration of

Pressure Sensitivity Kernels

Pressure sensitivity kernels were recently applied to time-reversal acoustics

in an attempt to explain the enhanced stability of the time-reversal focal spot

[Raghukumar et al., J. Acoust. Soc. Am. 124, 98-112 (2008)]. The theoretical

framework developed was also used to derive optimized source functions, closely

related to the inverse filter. The use of these optimized source functions results in

an inverse filter-like focal spot which is more robust to medium sound speed fluc-

tuations than both time-reversal and the inverse filter. The theory is now applied

to experimental data gathered during the Focussed Acoustic Fields experiment,

conducted in 2005, north of Elba Island in Italy. Sensitivity kernels are calculated

using a range-independent sound-speed profile, for a geometry identical to that

used in the experiment, and path sensitivities are identified to observed arrivals.

The validity of the kernels in tracking time-evolving Green’s functions is studied,

along with limitations as a result of their linearized nature. An internal wave

model is used to generate an ensemble of sound speed profiles, which are then used

along with the calculated sensitivity kernels to derive optimized source functions.

Focal spots obtained using the observed Green’s functions with these optimized

source functions are then compared to those obtained using time-reversal and the

inverse-filter. It is shown that these functions are able to provide a focal spot

superior to time-reversal while being more robust to sound speed fluctuations than

53
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the inverse filter or time-reversal.

3.1 Introduction

The ability to focus sound in a waveguide has been found to be useful in

a variety of applications such as underwater communications, target detection,

medical ultrasonics and non-destructive testing of materials.[1, 2, 3] Time-reversal

has been the tool of choice in these applications due its simplicity and robustness

to environmental perturbations. The time-reversal operation consists of first ac-

quiring the Green’s functions between an array of sources and a receiver at whose

location the sound is to be focused. This set of acquired Green’s functions, when

time-reversed and retransmitted, produces a focal spot at the receive location. Fo-

cusing is often observed even after the Green’s functions have changed during the

time that has elapsed between acquisition and retransmission.

While the focal spot has been shown to persist several minutes to days

after the initial acquisition of the Green’s function,[4, 5] there is a measurable

degradation in quality which eventually makes the re-acquisition of the Green’s

function necessary. In addition, the focal spot produced by time-reversal maximizes

the energy at the focal spot without constraints on sidelobes in depth, range and

time. The inverse filter has been suggested as an alternative to time-reversal which

can produce a sharper focal spot,[6, 7, 8] at the cost of knowledge required to obtain

additional Green’s functions in depth, and a reduced amplitude of the focal spot.

However, the stability of the focal spot with respect to environmental fluctuations

is still not constrained. In order to achieve enhanced stability of the focal spot,

Kim et. al.[5] proposed a modification of narrowband time-reversal which makes

the focus more stable, but with considerable broadening of the focal spot. This

paper demonstrates the practical use of optimized source functions which are able

to produce a sharp inverse filter-like focal spot, while at the same time being

robust to environmental fluctuations, via a sensitivity kernel-based regularization

term included in the inverse filter formulation.

Sensitivity kernels were originally proposed in seismology as wave-theoretic
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tomography tools as opposed to the more commonly used ray-theoretic time-of-

arrival tomography. [9, 10, 11] In the ocean waveguide, travel-time sensitivity

kernels[12] were shown to have the same properties as those developed in seismol-

ogy, and were used to invert for sound speed perturbations in deep water. Pressure

sensitivity kernels are currently being employed as a means of doing sound speed

inversions in shallow water.[13]

Recently, pressure sensitivity kernels were used a means of explaining the

remarkable stability of the time-reversal focus.[14] It was shown that the time-

reversal operation, which causes the various multipath arrivals in a waveguide to

arrive at the same time, also results in the pressure sensitivity kernel for each ar-

rival to overlap with the kernels for other arrivals, resulting in a net reduction in

sensitivity for time-reversal compared to a one-way transmission. An offshoot of

this work was the formulation of optimized source functions using pressure sensitiv-

ity kernels that were based on the inverse filter. This paper demonstrates the use

of these optimized source functions using experimental acoustic and environmen-

tal data gathered during the Focussed Acoustic Fields 2005 (FAF05) experiment,

conducted off of Elba Island, Italy in July 2005. The focal spot obtained using

these source functions is seen to have a peak-to-sidelobe level in between that of

time-reversal and the inverse-filter, but a greater stability to environmental per-

turbations than both schemes. The use of optimized source functions requires

knowledge of the covariance matrix for sound speed perturbations and sensitiv-

ity kernels. This scheme, therefore, should be viewed as being synergistic with a

shallow-water observation program, which requires similar knowledge.

This paper is organized as follows. Sec. II briefly describes the Focused

Acoustic Fields experiment. More comprehensive details may be found in the

paper by Song et. al.[15] Acoustic data from this experiment is used to compare

the time-reversal focal spot with that obtained by the optimized source functions.

The propagation model used to compute sensitivity kernels is also validated against

acoustic data. Environmental data gathered during the experiment is used to

validate the internal wave model, which in turn is used to generate range-dependent

sound speed profiles. Sec. III presents a review of pressure sensitivity kernels
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previously derived[14], and explores the limits of the linear assumption used to

derive the kernels. The ability of the sensitivity kernels to track a time-evolving

Green’s function is shown for time-scales on the order of a few minutes, after

which the linear assumption no longer holds. Sec. IV discusses the optimized

source functions and compares the focal spot properties with experimental time-

reversal data. It is shown that focal spot quality can be traded off for robustness

to environmental fluctuations, and that the optimized source functions can obtain

an inverse filter-like focal spot, while being robust to sound speed perturbations.

Finally, Sec. V concludes the chapter followed by an appendix which provides

details on the internal wave model used.

3.2 Experiment overview

The FAF05 experiment was conducted north of Elba Island off the west

coast of Italy in July 2005.[16, 4, 15] The experiment layout is shown in Fig. 3.1.

Acoustic transmissions were made using a 29-element Source Receive Array (SRA),

and received over a 32-element Vertical Receive Array (VRA). The SRA spanned

water depths 34 m to 112 m, with an array element spacing of 2.786 m, while the

VRA spanned water depths 48 m to 110 m, with an array element spacing of 2 m.

The water depth in the vicinity of the experiment was 121 m, and the arrays were

4.071 km apart in range. As seen in Fig. 3.1, various environmental measurements

were made during the course of the experiment, such as surface waves using a

waverider buoy (WR), temperature profiles using two thermistor chains (TC’s),

and current measurements using an acoustic doppler current meter (ADCP). The

thermistor chains had 11 elements each and spanned water depths 18.5 m to 76.5

m, with a sampling period of 10 minutes. In addition, conductivity-temperature-

depth (CTD) measurements were made approximately every 30 minutes. In this

paper, only the CTD and TC data are analyzed.

Round-robin pseudo-pulse transmissions were made every 20 seconds over a

period of 9 hours on 2005, Day 197. These transmissions, meant to measure Green’s

functions between the source and receive arrays, consisted of 1-second chirps with
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a bandwidth of 1.4 kHz, and a center frequency of 3.5 kHz. The received signals

on the VRA were then match-filtered to yield Green’s function estimates.

Figure 3.1: Locations of various moorings during the FAF05 experiment. In green
at the bottom is Elba Island.

Fig. 3.2 shows the temperature, salinity and sound speed profiles obtained

from a CTD cast that was made at the beginning of the transmissions, close to

the VRA. The sound speed profile is downward refracting, with the thermocline

located around 30 m. Temperature measurements made by the thermistor chains

at the same time are also plotted. While there is a close agreement with between

the CTD and the nearby TC2, the TC1 measurement is a little different, show-
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ing range dependence. Fig. 3.3 shows the temperature fluctuations measured on

thermistor chain TC2 during the FAF experiment. Temperature fluctuations are

plotted as filtered above and below the inertial frequency. Fluctuations above the

inertial frequency are shown over a period of 24 hours, while sub-inertial frequency

fluctuations are shown over 12 days. It appears that there is some internal wave

activity between the 30-40 m depth, with decreasing activity towards the surface

and bottom. Also included are the r.m.s plots for the high- and low-pass filtered

temperature chain data. The shorter time scale of the high-pass filtered data al-

lows for a closer look at the internal wave energy structure around the thermocline.

The r.m.s of the temperature data is used to constrain the energy parameter of

the internal wave model in Sec. III.
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Figure 3.2: Temperature, salinity and sound speed profile. Crosses on tempera-
ture plot denote measurements made by thermistor chain TC2, and circles denote
measurements made by thermistor chain TC1, at the same time. Crosses and dots
on the sound speed plot denote and SRA and VRA hydrophone depths.

Fig. 3.4 shows the evolution, over 10 minutes, of two observed Green’s

function estimates. The first is between a source at 112.6 m and receiver at 110 m,

located close to the bottom, while the second is between a source at 112.6 m, near

the bottom and a receiver at 48 m, near the surface. While both Green’s functions
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Figure 3.3: Temperature anomalies (with respect to mean) derived from ther-
mistor chains TC1 (blue solid)and TC2 (green dashed). The upper panel shows
fluctuations above the inertial frequency over 1 day while the lower panel shows
sub-inertial frequency temperature fluctuations over two weeks. Also included are
the r.m.s plots for the high- and low-pass filtered temperature chain data.

appear to be relatively stable, the right panel shows more dynamic variation over

the 10 minute interval, due to its location in a region of internal-wave induced

sound speed fluctuations.

3.3 Environmental modeling

In order to compute the optimized source functions, it is necessary to cal-

culate pressure sensitivity kernels and estimate the covariance matrix for sound

speed perturbations. Using the Born approximations, sensitivity kernels can be

derived from the Green’s functions between the source and points in the medium,

and between the same points and the receiver.[14] Experimental data typically only

have available the source-receiver Green’s functions. Green’s functions are hence

computed via computer simulations and tested by comparison with those that were
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Figure 3.4: Temporal evolution of FAF05 Green’s functions, for a source at 112.6
m.

experimentally available. A parabolic equation model is used to simulate acoustic

propagation in a range-dependent environment, and a Garrett-Munk-based inter-

nal wave model is used to generate time-varying sections of sound speed profiles.

[5]

To estimate the kernels, a single sound speed profile from a CTD cast

(Fig. 3.2) taken at the beginning of the transmissions was used in a split-step

Padé parabolic equation model (RAM)[17] was used to model sound propagation

through a range-independent environment. [18] The parabolic equation had a

delta-function starter, range and depth steps of 1 m and 0.05 m respectively, and

6 Padé coefficients, which gives negligible phase errors over a 75◦ angle range.

Green’s functions were computed every 8 Hz over the 2800 - 4200 Hz bandwidth.

Fig. 3.5 shows the waveguide parameters employed for the simulation of acoustic

propagation for the FAF05 environment.

The data-derived Green’s function is obtained by match-filtering the recep-

tions using a 2800 - 4200 Hz Hanning-windowed chirp with a roll-off factor of 0.2.

In order to make a fair comparison with the data, the same match-filtering method
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Figure 3.5: Waveguide parameters used in the acoustic propagation model.

was applied to the model-derived Green’s functions.

Fig. 3.6 shows the full-depth Green’s function on the VRA obtained using a

source at 112.6 m. The same source depth is used for a number of plots in this pa-

per. This is the deepest source depth available in the data, and gives the maximum

stability when transmitting to a deep receiver. The upper panel shows the experi-

mentally obtained Green’s function, while the lower two panels show that obtained

using the parabolic equation, for a range independent and range dependent sound

speed profile. Range-dependent sound speed profiles were obtained using the in-

ternal wave model, described in the following paragraphs. The range-dependent

calculation does not differ greatly from the range-independent calculation because

the horizontal decorrelation scale is about 4 km, not much smaller than the range

itself. Almost all the paths in the experimental Green’s function are resolved by

the parabolic equation. The close visual agreement between the two allowed for

the use of an experimentally obtained range-independent sound speed profile in

order to compute the sensitivity kernels.

Internal waves are a major source of sound speed fluctuations, particularly

in the absence of any significant surface wave activity, as was the case during

the course of the FAF05 experiment. In addition, the downward-refracting sound
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Figure 3.6: Green’s functions, model v/s data, for a source at 112.6 m

speed profiles encountered (Fig. 3.2) minimize the effects of surface waves on the

energetic arrivals. A modified Garrett-Munk internal wave model,[5, 19] was used

to calculate vertical displacements, from which sound speed fluctuations were cal-

culated according to,

δc(r, z, t) = cp[z − η(r, z, t)]− cp(z) (3.1)

where cp(z) is the potential sound speed and η(r, z, t) is the vertical displacement

of internal waves. The method used to calculate the vertical displacements due to

the internal waves, identical to that followed by Kim et. al.[5], is summarized in the

Appendix. Model parameters such as the internal wave spectrum, vertical mode

shapes, mode amplitudes and variance of temperature fluctuations are validated

against the thermistor chain data.

Fig. 3.7 shows a representative buoyancy profile calculated from a CTD cast

whose details are shown in Fig. 3.2. The internal wave spectrum calculated using

this buoyancy profile is also shown, along with the power spectrum of the temper-

ature time series. The energy parameter for the internal wave model (Appendix)

is constrained by choosing a value such that the peak standard deviation of model
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fluctuations matches that of the temperature fluctuations, high-pass filtered above

the inertial frequency. Even so, the energy parameter that is used is probably too

low due to the sharp thermocline in the single profile. Undoing the effect of these

sharp transitions is currently work in progress. Mode amplitudes as used by the

model are compared to temperature chain data by projecting the temperature data

onto its EOF modes to yield the mode amplitudes for the temperature time series.

Mode shapes are also compared to the temperature data, and the first four mode

shapes are shown in Fig. 3.8. The first mode two mode shapes, which contribute
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about 75% (Fig. 3.7) of the total internal wave energy, show a match between the

model and data. Details of the method used to calculate mode shapes and mode

amplitudes may be found in the Appendix.

!! !"#$ " "#$

"

%"

&"

'"

("

!""

!%" )

)

*+,+

-./01

!"#$ " "#$ !

"

%"

&"

'"

("

!""

!%"

!"#$ " "#$ !

"

%"

&"

'"

("

!""

!%"

23415,6/0

*
0
4
,7

!! !"#$ " "#$

"

%"

&"

'"

("

!""

!%"

Figure 3.8: Model mode shapes (dashed) v/s data-derived EOF mode shapes
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The final model test involves combining the internal wave model and acous-

tic propagation code, and comparing the behavior of the time-reversal focal spot

between theory and observation. Ten source transducers were chosen, spaced 5.6

m apart, spanning the same depths as ten similarly-spaced SRA transducers. The

internal wave model was used to generate 2 days of range-dependent sound speed

profiles. The parabolic equation model was then implemented for the first 10 min-

utes of sound speed profiles. The first set of Green’s functions between the source

array and the receiver is time-reversed and used as the source shading function in

order to compute the time-evolving focal spot for the model. Next, focal spots for

the FAF05 data are computed by taking 10 minutes of the Green’s function data,

time-reversing the first set, and match-filtering with the rest to give time-evolving

focal spots. Fig. 3.9 shows the evolution of the peak pressure for the time-reversal

focal spot at four different depths in the water column. The vertical bars represent
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90% confidence intervals obtained using 9 different 10-minute segments of Green’s

functions. While the model is able to capture the initial slope in the evolution of

the focal spot, some observed changes in slope are not reproduced. This limitation

is particularly relevant in the context of pressure sensitivity kernels, which will be

discussed in the next section. The ability to model the slope, however, is a test of

the validity of the energy parameter used in the internal wave model. For example,

a larger energy parameter should increase the rate at which the focal spot pressure

varies. This method can also be used as a means to constrain the energy parameter

of an internal wave model.
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Figure 3.9: A comparison of the evolution of the time-reversal focal spot peak
amplitude for the model and data.

3.4 Pressure sensitivity kernels

3.4.1 Background

This section essentially summarizes the derivation of pressure sensitivity

kernels as presented in Skarsoulis et. al.[12]
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The pressure perturbation to the Green’s function G(r|rs) between at a

location r due to a harmonic point source of unit strength located at rs can be

expressed as

∆G(r|rs) = −2ω2

∫
V

G(r|r′)G(r′|rs)
∆c(r′)

c3(r′)
dr′ (3.2)

where ω the circular frequency of the source, and c(r) is the sound-speed distribu-

tion.

This is called the first Born approximation.[20] It is also called the single-

or weak-scattering approximation, or wave-field linearization, and is widely used

in connection with scattering problems.[21] It is a linear relation between the per-

turbation in the sound-speed distribution and the induced perturbation in the

Green’s function. The integration volume in eq. 3.2 is all space or the region en-

compassing the source and receiver over which sound speed perturbations result

in perturbations to the Green’s function.

A key assumption upon which the validity of the first order Born approxi-

mation rests is that ∆c/c, integrated over the volume, be small. The limits of the

first Born approximation in connection with experimental data are explored in the

next sub-section.

For a single point source the resultant pressure field can be written as

P (rr;ω; c) = G(rr|rs;ω; c)S(rs;ω) (3.3)

where P (rr;ω; c) is the frequency-domain pressure at receiver location rr, from a

source located at rs. G(rr|rs;ω; c) is the frequency-domain Green’s function that

turns pressure at the source at frequency ω to pressure at the receiver. S(rs;ω)

is the signal at source rs at frequency ω. For an array transmitting to a single

receiver, the received signal is given by adding up all source contributions:

P (rr;ω; c) =
Ns∑
i=1

G(rr|rsi;ω; c)S(rsi;ω) (3.4)

where rsi is the location of the ith source element, and Ns is the number of source

elements.

In a perturbed propagation environment, the frequency domain perturba-

tion to the received pressure can be approximated by substituting the perturbed
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Green’s function into eq. 3.4

∆P (rr;ω; c) =
Ns∑
i=1

∆G(rr|rsi;ω; c)S(rsi;ω) (3.5)

Using eq. 3.2 for the perturbed Green’s function yields and expression for the

pressure perturbation at the receiver for an arbitrary source function,

∆P (rr;ω) =

∫
V

Ns∑
i=1

−2ω2 G(rr|r;ω; c) G(r|rsi;ω; c)
∆c(r)

c3(r)
S(rsi;ω)dr

=

∫
V

Kap(r;ω; c)∆c(r)dr (3.6)

where K(r;ω; c) is the sensitivity of the received pressure to a sound speed per-

turbation at location r, for an array of sources transmitting to a single receiver.

Eq. 3.6 is a linear relation between the pressure perturbation at the receiver

and sound speed perturbations in the medium, valid when ∆c/c is sufficiently small.

It provides the framework for studying the effect of a source transmission scheme

on the received pressure perturbation. Replacing S(rS;ω) by G∗(rr|rs;ω; c), will

result in an expression for the pressure perturbation for time-reversal. Replacing

S(rs;ω) by 1/G(rr|rs;ω; c) will result in an expression for the pressure pertur-

bation for the inverse filter.[22] In Sec. V, eq. 3.6 is examined in terms of an

optimization problem where the goal is to obtain a set of source transmissions

that will minimize pressure perturbations at the receiver.

3.4.2 Experimental demonstration

In this section, the validity of pressure sensitivity kernels, briefly summa-

rized in the previous section and the references contained therein, is tested using

experimental data collected during the FAF05 experiment.

The same parabolic equation code mentioned in Sec. III-A is used to cal-

culate the pressure sensitivity kernel (eq. 3.6) for a given source-receiver pair. For

every source-receiver pair, two forward runs of the code are required. The first with

the source placed at the source depth, propagated out to the range of the receiver,

and the second with the source placed at the depth of the receiver, propagated out
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to the same range. The results of the second run, flipped in the range dimension

is multiplied at each range and depth step with the result of the first run to yield

the pressure sensitivity kernel at each range and depth step, for each frequency

(eq. 3.6). The background sound speed profile at which the sensitivity kernels are

calculated is obtained from one of the CTD casts, taken at the beginning of the

transmissions (Fig. 3.2). Sensitivity kernels are calculated for a range-independent

sound speed profile, on top of which range-dependent sound speed perturbations

are imposed in order to compute Green’s function perturbations.

Fig. 3.10 shows the pressure sensitivity kernels, in the time-domain, for a

source at a depth of 112.6 m and a receiver at a depth of 110 m. These depths

correspond to the depths of the deepest element of the SRA and VRA respectively.

The Green’s function is shown on the upper panel, with various paths identified as

A-F. FAF05 observations of the Green’s functions for the same source and receiver

depths can be seen in Fig. 3.4. Time-domain sensitivity kernels are calculated by

taking the inverse Fourier transform of the frequency domain sensitivity kernels

and then evaluating the resulting time-series at the time-of-arrival of the various

paths.

The pressure sensitivity kernels in Fig. 3.10 show an oscillatory structure

around the ray paths which is associated with Fresnel-zone behavior[12], aris-

ing from the interference of two plane waves (eq. 3.6).[23] While the Fresnel-

zone is a single frequency concept, the broadband analogue, called the ”zone-

of-influence”[24], is a superposition of several single-frequency Fresnel zones. The

effect of bandwidth then is a decaying of the oscillatory structure away from the

first zone, with increased bandwidth resulting in a faster decay. The effect of in-

creasing central frequency is a narrowing of the width of each zone-of-influence.

The combined effect of increasing bandwidth and central frequency is that the

wave-theoretic sensitivity kernel starts to approach the ray-theoretic kernel.

Next, the limits of the linear first Born approximation used to derive the

pressure sensitivity kernels (eq. 3.2), are tested numerically for the sound speed

profiles observed in the experiment. The linearity test involves computing a per-

turbed Green’s function via a forward model run, and then comparing with the
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whose paths sensitivity kernels are shown in the lower panels. Units of sensitivity
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estimate obtained using the sensitivity kernel. The estimate produced using the

sensitivity kernel is given by

Gkernel(t) = Gorig(t) +
∑
r,z

K(r, z, t)δc(r, z) (3.7)

where Gorig(t) is the unperturbed time-domain Green’s function, K(r, z, t) the

time-domain sensitivity kernel and δc(r, z) the sound speed perturbation.

A single arrival (arrival C in Fig. 3.10) is considered. The arrival is refracted

and bottom-reflected. A sound speed perturbation uniform in range and depth is

introduced so that the arrival pattern is nearly uniformly advanced or delayed.

The linearity of several different sensitivity kernels is tested: the full-wave kernel

as given by eq. 3.6 for a one-way transmission (unity source function), the envelope
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kernel for a one-way transmission, the full-wave kernel for time-reversal with a

single source, and the envelope kernel for time-reversal with a single source. The

envelope kernel is given by[25]

Kenv(t) =
GR(t) KR(t) + GI(t) KI(t)

|G(t)|
(3.8)

where GR(t) and GI(t) are the real and imaginary parts of the unperturbed base-

banded Green’s function, and KR(t) and KI(t) are the real and imaginary parts

of the basebanded pressure sensitivity kernels.

The results of the linearity tests (Fig. 3.11) show the highly quadratic na-

ture in which the magnitude of the arrival reacts to sound speed changes. For

a one-way transmission, using the envelope of the sensitivity kernel increases the

range of linearity over which the first Born approximation is valid. The range of

linearity for time-reversal (full-wave) is less than the range over which the linear

approximation is valid for a one-way transmission. Time-reversal effectively delays

each path such that they all arrive at the same time at the receiver. In terms

of sensitivity kernels, this results in a single sensitivity kernel for the peak of the

focal spot which is characterized by several overlapping sensitivity kernels, one for

each path.[14] The reduced linearity exhibited by the kernels for time-reversal is

a a result of this overlap, since the amplitude of each multipath will affect the

kernel of the combination at a full-wave level. This is similar to the problem faced

in tomography, where an arrival peak made up of two different ray paths is not

generally useful for inversion.[12] The time-reversal kernel, therefore, cannot be

expected to reproduce the evolution of the focal spot for very long. The quadratic

nature of the peak amplitude variation can be tackled using the second Born ap-

proximation, demonstrated by Piperakis et. al. in weakly range-dependent ocean

environments[26], but is beyond the scope of this paper. The optimized source

functions, described in the next section, are derived and tested within the range

of sound speed perturbations over which pressure perturbations are linear.

Next, the sensitivity kernels are used to calculate Green’s functions in order

to study how long one can expect the assumption of linearity to hold for the FAF05

environment. This is done by first computing a baseline and a perturbed Green’s

function using a forward run of the parabolic equation model. The sensitivity
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kernel is then used, along with the known sound speed perturbation, to estimate a

Green’s function perturbation, which is then compared to that obtained using the

forward run. The source is at a depth of 112.6 m and receiver at a depth of 110

m. Two such tests are conducted. The first uses range-independent sound speed

profiles computed using the thermistor chain data. The second test uses range-

dependent sound speed profiles obtained from the internal wave model. For each

test, results are displayed in three ways. The first simply displays the baseline,

perturbed and kernel-estimated Green’s functions (called the full-wave Green’s

function, due to the presence of carrier-frequency modulation). The second displays

the envelope of the baseline and perturbed Green’s function together with the

kernel estimate computed using the envelope kernel (eq. 3.8). The third displays

the perturbation to the envelope compared to the baseline Green’s function.

For the left panel of Fig. 3.12 sound speed profiles are computed from the

thermistor chain data located close to the VRA (TC2), at roughly the same time

that the CTD shown in Fig. 3.2 was taken. The sound speed profiles are assumed

to be range-independent. The Green’s function as predicted by the full-wave kernel

is considerably higher in amplitude than both the original Green’s function and

the actual perturbed Green’s function. The envelope kernel does a much better

job of predicting the perturbed Green’s function, as seen in the middle panel. This

is in agreement with the lower left figure in Fig. 3.11 where the envelope kernel is

seen to have a larger range of linearity. The lowest panel in Fig. 3.12 shows the

perturbation to the envelope of the Green’s function. While the envelope kernel is

able to predict the envelope perturbation at a 10 minute interval, it was seen to

degrade rapidly for longer intervals.

The linearity of the sensitivity kernels are then tested along with the range-

dependent sound speed profiles taken from the internal wave model. The results

shown in the right hand panels of Fig. 3.12. The baseline Green’s function is

the same as in Figs. 3.6, 3.10. Again, while the full-wave kernel quickly loses its

validity, the use of the envelope kernel is able to extend the linear regime over

which perturbations can be predicted.
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3.5 Optimized source functions

The mathematical framework that expresses the pressure sensitivity as a

function of the source transmission, summarized in Sec. IV, allows for the deriva-

tion of optimized source functions that can give an inverse filter-like focal spot,

whose quality can be traded-off for robustness to sound speed fluctuations. While

the complete derivation can be found in Raghukumar et. al.[14], a brief summary

is given below. The main focus of this section is on comparing the focal spot ob-

tained using the optimized source functions with experimental time-reversal data

gathered during the FAF05 experiment.

3.5.1 Theory

The optimized source functions are derived through a joint optimization

process that seeks to minimize two cost functions: the first being a minimization

of pressure perturbations at the receiver due to the changing sound speed, with

the second being to obtain a focal spot that is a delta-function in depth and time.

In order to be able to perform the derivation using linear algebra, the var-

ious quantities involved, such as sensitivity kernels, sound speed profiles, and

source functions, are discretized. The frequency-domain sensitivity kernel, orig-

inally three-dimensional (Nz × Nx × Ns), where Nz = 60 is the number of depth

points,Nx = 204 is the number of range points, and Ns = 10 the number of

sources, is stacked in range to give the two-dimensional discrete sensitivity kernel

K(ω) with dimensions NzNx × Ns. Similarly the two-dimensional sound speed

profile is also stacked in range to give the NzNx × 1 vector ∆c. The pressure

perturbation (eq. 3.4) is then written as

∆P (ω) = [K(ω) s(ω)]T ∆c (3.9)

where the superscript (·)T denotes matrix transpose. This is the pressure pertur-
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bation that is to be minimized via the cost function

J1(ω) = < |∆P |2 >

= s(ω)H K(ω)H < ∆c∆cT > K(ω) s(ω)

= s(ω)H K(ω)H Cdc K(ω) s(ω)

= s(ω)H Cmdc s(ω) (3.10)

where Cdc is the sound speed perturbation covariance matrix and the superscript

(·)H denotes matrix complex conjugate. Cmdc is the Ns × Ns covariance matrix

of the Born-approximation perturbed Green’s functions at frequency ω between

an array of sources and a single receiver. So element ij of Cmdc is the covariance

between the pressure perturbation at the receiver from a transmission from source

i and the pressure perturbation at the receiver from a transmission from source j.

The second condition that is addressed is that a focal spot be present. In

the process of achieving this, the inverse filter was re-derived. While time-reversal

maximizes the acoustic intensity at the focal spot, the inverse filter adds additional

constraints such as the minimization of sidelobes in depth, range and time. The

derivation starts with a Bayesian linear model

u(ω) = G(ω)s(ω) + r (3.11)

where u(ω) is an objective function, whose frequency-domain representation is

a delta function in depth and time, defined at Np depths. G is the Np × Ns

matrix of Green’s functions, and r a misfit vector. Solving eq. 3.11 is equivalent

to minimizing the cost function

J2 = rHCr
−1r + sHCs

−1s (3.12)

The joint minimization of J1 and J2 with respect to s results in the maxi-

mum a posteriori estimator[27, 14]

Ŝ(ω) = (
α

β
I + γCmdc + GHG)−1GHu (3.13)

which is obtained by assuming that Cr = αI and CS = βI. γ is introduced

through a scaling parameter for the sensitivity cost function J1 when adding the two
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cost functions together to perform the joint optimization. The optimized source

function (eq. 3.13) may be recognized as a regularized inverse filter,[8] with the

terms α
β
I+γCmdc being the physics-based regularization term that adds robustness

to environmental perturbations to an inverse filter-like focal spot. These functions

are different from the robust time-reversal method proposed by Kim et. al.[5]

where the cost of stability was a focal spot being smeared out in range, depth and

time.

3.5.2 Experimental demonstration

This section brings together experimental time-reversal data, the internal

wave model, the parabolic equation propagation model, and the optimized source

functions.

In order to compute the optimized source functions, the various components

of eq. 3.13 need to be computed. The covariance matrix Cmdc is the weighted inner

product of the sensitivity kernel K(ω) with the weighting vector Cdc, the covariance

matrix of sound speed perturbations. As outlined in Sec. IV, an experimentally

gathered range-independent sound speed profile is used to conduct the forward

model runs. Sensitivity kernels are calculated using the parabolic equation model,

between 9 sources and 11 receivers over a 1.4 kHz bandwidth (2.8 kHz-4.2 kHz).

The internal wave model is used to generate an ensemble of range-dependent sound

speed profiles from which the covariance matrix for sound speed perturbations is

calculated. The Green’s function matrices, G may either be calculated using the

acoustic propagation code, or if available, taken directly from experimental data.

The presence of source and receive vertical arrays during the FAF05 experiment

allowed for the use of experimental Green’s functions in eq. 3.13. Although there

were 29 source elements and 32 receive elements only 9 source elements and 11

receive elements are used in the examples. The 9 sources are chosen to be every

third SRA hydrophone starting from the bottom, and the 11 receivers are chosen to

be every fourth VRA hyrdrophone starting from the bottom. This is done in order

to observe greater differences between time-reversal and the inverse filter/optimized

source functions. The relative gains of using an optimized source transmission
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scheme are diminished with an increasing number of source elements since the

quality of the time-reversal focal spot improves significantly.

The next quantity that needs to be chosen in eq. 3.13 is the shape of the

focal spot u(ω). Initially, u(z, t) is set to be a delta function in the baseband

sampled at twice the bandwidth (1.4 kHz). This is then centered around the

carrier frequency (3.5 kHz) and Fourier-transformed using a 12 kHz sampling rate

to give u(ω), whose amplitude is adjusted to be the same as that of the time-

reversal focal spot. For a given bandwidth, this is the best attainable focal spot.

The inverse filter is computed using eq. 3.13 with α = γ = 0. The focal spot

produced by this inverse filter is then chosen to be the new objective function

u(ω) that is used in further calculations. The use of this objective function will

result in the focal spot cost function J IF2 (eq. 3.12) to be zero for the inverse filter.

Next, the scaling parameter α is chosen such that the focal spot cost function

for time-reversal JTR2 = 1. The focal spot cost function for the optimized source

function will thus be conveniently between 0 (inverse filter) and 1 (time-reversal).

Finally, β and γ are varied such that desirable cost function characteristics are

achieved, such as a focal spot that is similar to the inverse filter, and with a peak

stability greater than time-reversal. Fig. 3.13 shows a representative plot of the

cost functions that are a result of computing optimized source functions at one of

the times a CTD was taken during the FAF experiment (133000 UTC on 16 July

2005). Additional plots of cost functions for various scenarios may be found in

Raghukumar et. al.[14]

Time-reversal focal spots are computed by choosing a time-reversed Green’s

function at the beginning of a 20-minute window as a source shading function, and

then correlating this with Green’s functions experimentally acquired every minute.

Optimized source transmissions and the inverse filter are calculated using eq. 3.13,

with α and γ set to zero to produce the inverse filter. Focal spots are then computed

by calculating the respective source shading function as outlined above, and then

correlating these with experimental Green’s functions over the 20-minute window.

In the FAF experiment, nine CTD’s were taken during the time that Green’s

function estimates were made. Sensitivity kernels and optimized source fuunctions
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Figure 3.13: Upper: Sensitivity cost function (J1 in eq. 3.10) for time-reversal
(black), inverse filter (green) and optimized source functions (red), and Lower:
Focal spot cost function (J2 in eq. 3.12) for the inverse filter and optimized source
function. The plot is normalized so that the focal spot cost function for time-
reversal is fixed at 1 and that of the inverse filter is 0.

are calculated using the range-independant parabolic equation code for each of

the CTD profiles. Focal spots are compared for 20-minute windows beginning at

the time the CTD’s were taken. This allows for calculating error bars for the

various focal spot metrics by averaging over the 9 realizations. The linearity of the

kernels is only valid for approximately 10 minutes, after which the linear first Born

approximation breaks down and the sensitivity kernels are no longer able to track

the evolution of the Green’s function due to evolution of the sound speed field.

However, focal spots are still compared for a 20-minute window, in order to see if

results change significantly as a result of the kernels no longer being in the linear

regime. The values of β and γ were typically 1011 and 0.1α respectively. The large

value of β is chosen due to α being on the order of 1014 due to the units used in
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representing the experimental Green’s functions. These choices of β and γ result

in all the terms in eq. 3.13 that are inside the inverse being on the order of 103.

Three metrics are used to evaluate the quality of focal spots for the different

schemes. All metrics are computed relative to the values for time-reversal. The first

is the peak-to-sidelobe ratio, where the sidelobe level is taken to be the magnitude

of the highest sidelobe in depth or time. The peak-to-sidelobe ratio is a measure

of the sharpness of the focal spot. The second metric reflects the sensitivity to

sound speed perturbations, and measures the change in pressure at the expected

time and depth of the focal spot due to changes in the sound speed field. The

third metric is the peak power for each focusing scheme.

0 2 4 6 8 10 12 14 16 18 20
!5

0

5

PS
R 

(d
B)

 

 
IF
OF

0 2 4 6 8 10 12 14 16 18 20
!0.01

!0.005

0

0.005

0.01

dP
Pe

ak
/P

pe
ak

(0
)

0 2 4 6 8 10 12 14 16 18 20
!10

!5

0

Pe
ak

 p
ow

er
 (d

B)

Time (minutes)

Figure 3.14: Upper: Peak-to-sidelobe ratio, Middle: peak stability and Lower:
peak power for the inverse filter (red dashed) and optimized source function (black
dot-dash), using experimentally derived Green’s functions. The curves plot the
changes with respect to time-reversal.

Fig. 3.14 shows the peak-to-sidelobe (PSR) ratio (top panel), peak stability

(middle panel) and peak power (lower panel) for the inverse filter and optimized

source function, along with error bars. In order to compare with time-reversal, the
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curves for time-reversal have been subtracted out for each of the nine 20-minute

windows, after which the mean and standard error are calculated. It should be

pointed out that dP in the middle panel is calculated using the pressure at the

time of the peak of an unperturbed focal spot. Fluctuations of the peak will cause

it to be shifted in time as a result of which dP will always be negative. Hence,

after the curve for time-reversal has been subtracted out, a positive value in the

middle panel of Fig. 3.14 reflects a reduction with respect to time-reversal.

The optimized source function has a PSR that starts off a little higher than

time-reversal, and builds up to about 0.5 dB higher than time-reversal 10 minutes

into the window. The optimized source function closely follows this trend until

about 12 minutes after which it starts to show the highest PSR. The peak sensi-

tivity of the optimized source function is about the same as the inverse filter and

time-reversal until about 5 minutes, after which it has the lowest peak sensitivity

of all the three transmission schemes. The peak power for the inverse filter is about

7 dB lower than time-reversal, and that of the optimized source function is about

2 dB higher than the inverse filter. Time-reversal has the highest peak power since

it is a matched filter, whose specific goal is to maximize peak power. Fig. 3.14

thus shows the optimized source function having a higher peak power than the

inverse filter (but lower than time-reversal), while showing a reduced sensitivity to

environmental fluctuations, at the cost of a lowered PSR compared to the inverse

filter. The peak power, PSR and sensitivity for the optimized source function can

be controlled by varying β and γ. For example, in order to increase the peak

power, β or γ can be reduced. However, this would come at the cost of increased

sensitivity to sound speed fluctuations.

While the differences seen in Fig. 3.14 are small and the error bars mostly

overlap, they are in the right sense, and provide insight into the use of sensitivity

kernels for optimal signal design. In order to verify the results, the same exercise

was undertaken using just the internal wave model. The internal wave model was

used to generate 4 days of time-varying, range-dependent sound speed profiles,

using which time-evolving Green’s functions are computed for the first 10 minutes.

Optimized source functions were then computed, and compared to time-reversal
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and the inverse filter over nine of these 10-minute windows. The gains obtained

using the optimized source functions were similar to those using data. It was found,

however, that when the covariance matrix for sound speed perturbations used to

compute the optimized source functions is calculated using just the 10 minutes

of sound speed profiles, the gains are much higher. Thus, while using the longer

covariance matrix better captures the internal wave dynamics over several days,

one cannot expect this to result in sensitivity reduction over the relatively short

10 to 20 minute windows over which the kernels are valid.

Another drawback of the results shown in Fig. 3.14 is the overlap of error

bars due to the small number of windows available to compute the optimized source

functions. This limitation is due to the limited availability of CTD profiles during

the transmissions, and that the sensitivity kernels operate in linear regime for only

a few minutes after the time the CTD was taken. However, the results show that

the optimized source functions are able to produce a focal spot that is inverse

filter-like, while at the same time being more robust to environmentally induced

sound speed fluctuations.

3.6 Conclusions

Pressure sensitivity kernels, which were introduced in a previous paper[14],

are studied using experimental data via a multi-pronged approach. The results

of an internal wave model are compared against thermistor chain data gathered

during the FAF05 experiment. A parabolic equation code is then used to model

time-reversal through a range-dependent environment, and the evolution of the

focal spot is compared with experimental acoustic data. This can be thought of

as an acoustic test of the internal wave model. Sensitivity kernels are then derived

using environmental data gathered during the experiment with the intention of

predicting the evolution of the time-reversal focal spot, and to demonstrate the

use of optimized source functions. The first goal was not met due to the quadratic

nature by which the peak pressure varies, a phenomenon that the linear sensitivity

kernels are not capable of capturing. Time-reversal only exacerbates the problem



81

due to the presence of overlapping paths. In fact, the same process which makes

time-reversal robust to sound speed fluctuations also reduces the linear regime for

the time-reversal sensitivity kernel.

Sensitivity kernels were then used to derive optimized source functions that

can provide a focal spot superior to time-reversal by taking advantage of knowledge

of the propagation environment. The presence of adjustable parameters allows for

fine-tuning focal spot properties such as peak-to-sidelobe ratio or robustness to

environmental fluctuations. These optimized source functions were compared to

experimental acoustic data gathered during a recent experiment, which validated

their utility. In order to compute the optimized source functions, sensitivity kernels

are calculated using a parabolic equation model. In addition, an internal wave

model (validated against environmental data) was used to compute the covariance

matrix for sound speed perturbations, also required to compute the optimized

source functions.

The limitations of the scheme proposed are several. First, the internal

wave model used may not be adequate, in which case insufficient, or inaccurate

knowledge of the sound speed fluctuation covariance matrix is a limiting factor.

The same is true if the background sound speed is not adequately known, in which

case the sensitivity kernels would be inaccurate. If sound speed perturbations are

large, then the linearity of the kernel is quickly violated. Finally, other sources of

error, such as surface effects (which were small during FAF05), or array motion, if

unaccounted for, would also limit the use of the optimized source functions.

While time-reversal is still an enormously attractive focusing scheme due

its simplicity, it is often inadequate for applications such as underwater commu-

nications, which often require equalization in order to mitigate temporal sidelobe

levels. On the other hand, the use of optimized source functions requires the

computation of sensitivity kernels and the covariance matrix for sound speed per-

turbations, information which is often not available. However, the rich reception

dataset available in FAF05 provided observed Green’s functions, which made the

use of these optimized source functions considerably easier.
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3.A Internal wave modeling

The vertical displacement of internal waves, η(r, z, t) can be expressed as

sum of vertical eigenmodes

η(r, z, t) =

∫ 2π

0

∫ Nmax

ωI

∑
l

f(ωl(k), l, θ)φl(ωl(k), z)exp i(kr cos θ − ωl(k)t)dωdθ

(3.14)

where ωI is the local inertial frequency, Nmax is the maximum buoyancy frequency

and k and φl(ωl(k), z) are the horizontal wave number and vertical eigenfunction

respectively. For the FAF05 experiment, ωI at 43◦ N is 0.06 cycles per hour and

Nmax is 31.8 cycles per hour. Due to the absence of azimuthal information in the

thermistor chain data, the vertical displacement as given by the model is integrated

in azimuth. F (ω, l) =
∫ 2π

0
f(ω, l, θ)dθ is a zero mean, complex Gaussian random

variable associated with the internal wave power spectrum,[5]

|F (ω, l)|2 = bEGMρ
(∫

N(z)dz
)2

H(l)B(ω) (3.15)

where bEGM is the internal wave energy parameter (1 m), ρ is the water density

and H(l) is the mode amplitude spectrum given by

H(l) = M(l2 + l2∗)
−p/2 (3.16)

and M is a normalization factor such that
∑llmax

l=1 H(l) = 1. The p and l∗ determine

the relative mode amplitude by power law.[5] The following functional spectrum



83

B(ω) was used, which is compared to the spectrum of detrended thermistor chain

time series at a depth of 39 m in Fig. 3.7.

B(ω) = W
ωI
√
ω2 − ω2

I

√
N2

1/3 − ω2
I + ω2

ω3
(3.17)

where W is a normalization factor such that
∫ Nmax

ωI
B(ω)dω = 1. The spectrum

decreases with a slope of ω−2 and then ω−2/3 from N1/3 =
∫
N(z)dz/3D.

The dispersion relation ωl(k) and vertical eigenfunction φl(ωl(k), z) are cal-

culated by numerically solving, via the WAVE code [28], the differential equation

d2φ

dz2
+ k2

[N2(z)− ω2

ω2 − ω2
I

]
φ = 0 (3.18)

subject to the boundary conditions φ(0) = φ(D) = 0 where D is the water depth.

N(z) is the buoyancy frequency, calculated from a representative CTD cast. A

range of 50 horizontal wavenumbers k is chosen to represent internal wave wave-

lengths ranging from 20 m to 1km. For each wavenumber k, WAVE returns an

eigenfrequency ωl(k) for mode l and the mode shape φl(ωl(k), z). Mode shapes are

calculated for 11 modes, in order to be consistent with the number of temperature

sensors in the thermistor chain. In order to compare displacement mode shapes as

returned by the model with those derived from the thermistor chain data, the dis-

placement modes need to be converted to temperature modes. This conversion is

done by first multiplying the displacement in eq. 3.14 by dT/dz obtained from the

CTD profile to give model temperature fluctuations. Next, the covariance matrix

for temperature fluctuations is calculated whose eigenmodes can then be compared

to those of the thermistor chain data. Fig. 3.8 shows a comparison between the

eigenmodes calculated by the model and that computed from the displacement

time series, for the first 4 modes.

The covariance matrix can be calculated directly from eq. 3.14 by recogniz-

ing that

η(r, z, k) ∼
∑
l

B(k)H(l)φl(k, z)eikr (3.19)

∼
∑
l

A(k, l)φl(k.z)e
ikr (3.20)
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Discretizing the range and depth quantities gives the relation

dη(k) = P a (3.21)

where P is the NrNz × l matrix φl(k, z) eikr and a is the l × 1 vector B(k)H(l).

Nr is the number of range points and Nz is the number of depth points. The

covariance matrix for temperature fluctuations can then be calculated as

CdT =< dT dTT >k (3.22)

where dT = dη · dT/dz.
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Chapter 4

Temperature Profile Estimation

using Thermistor Chain Data

This chapter demonstrates an iterative inversion scheme that inverts ther-

mistor chain data for a reference high-resolution temperature profile. Tempera-

ture fluctuations that are observed on a thermistor chain array are assumed to be

caused by the displacement of water masses from different depths, whose under-

lying temperature profile is unknown[1]. Given a sufficient overlap of temperature

time-series between successive thermistor chain elements, it is shown that the un-

derlying temperature profile can be extracted, along with the displacement time-

series that resulted in the measured thermistor time-series. Several test cases are

demonstrated, starting with a piecewise linear profile with identical displacements

at each observation depth. A measured CTD profile is then used, along with a

temperature time-series generated using a linear internal wave model. Finally, the

algorithm is demonstrated on a time-series measured during the course of making

environmental measurements as part of the Focused Acoustic Fields experiment in

2006.

4.1 Introduction

Temperature fluctuations observed on a thermistor chain array are a valu-

able tool to measure and understand an ocean environment. Temperature observa-

88
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tions can be easily converted to sound speed estimates. An understanding of sound

speed fluctuations is of vital interest in acoustic propagation modeling[2], in order

to be able to accurately predict the acoustic field in a waveguide. A thermistor

chain deploys relatively easily, and can provide a time- and depth-scale for temper-

ature observations. In shallow water environments, their utility is enhanced due

to their ability to span almost the entire water column. This property is especially

useful in studying internal waves in shallow water.

Internal waves cause displacements of water parcels having different tem-

peratures, resulting in a temperature time-series[3, 4]. It is possible to directly

relate temperature and displacement, given a time and depth temperature obser-

vations, along with a reference temperature profile. Fig. 4.1 shows an example of

a reference temperature profile, whose displacement results in a temperature time-

series. This reference temperature profile can be difficult to measure. Thermistor

chain elements are often widely spaced (1-10 m apart) making it impossible to

obtain a high-resolution temperature estimate in depth. Besides, even if a high-

resolution CTD (conductivity-temperature-depth) measurement were made at the

same location as the thermistor chain, it will simply be one realization of a fluc-

tuating temperature profile. Thus, there is a need for a method of estimating the

background temperature profile, the repeated displacement of which results in the

observations. A typical temperature profile, while often monotonic, is non-linear,

resulting in a non-linear mapping of temperature to displacement, and vice-versa.

Thus, in order to invert the temperature time-series for a reference temperature

profile, iterative methods are an attractive option. The thermistor chain, in such

an application, can be seen as a ‘synthetic aperture’ array, which samples a re-

peatedly displaced temperature profile.

It has been observed by Pinkel[5] that displacements can often be described

by a Gaussian distribution. Given a reference profile, temperatures observed at

a certain depth will half as often be above the reference profile at that depth, as

below it. Thus the median of temperature observations is very close to the true

reference, as shown by Pinkel in coastal waters.

This paper demonstrates once such iterative method, based on the Gauss-
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Figure 4.1: Illustration of the principle underlying the inversion scheme. Displace-
ment of the profile on the left-hand panel results in the time-series measured in
the right-hand panel

Newton method[6, 7], that performs the inversion. The method is described in

more detail in the next section. Having described the method, Sec 3 demonstrates

the iterative inversion algorithm using several simulation test cases. The first set

of test cases have a known reference temperature profile that can be compared

with the estimate to judge the validity of the method. A simple test case is that of

a piecewise linear temperature profile with uniform displacement depths at several

observation points. Next, a measured CTD profile is used, again with uniform

displacements. Finally, displacements are modeled using a linear internal wave

model, and the method is tested. Section 4 applies the inversion method to a

measured set of observations, made during the course of an underwater acoustics

experiment, Focused Acoustic Fields 2006 (FAF06). Brief details of the experiment

are provided, with more information available in Song et. al. [8]. While the

analysis in previous chapters utilized environmental and acoustic measurements

made during FAF05, the thermistor chain elements were spaced too far apart in

depth, and sampled too sparsely in time for the estimation method used in this

chapter to be effective. Sec. 5 concludes the chapter and points to improvements
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that can be made.

4.2 Method

This section explains the iterative technique based on the Gauss-Newton

method that is used to invert the temperature observations to yield an estimate of

the background temperature profile.

The basic principle behind the inversion scheme is that the temperature

observations are caused by displacements of the reference profile. Thus, each ther-

mistor chain element measures the temperatures of water parcels associated with

water depths above and below. If between two successive thermistor elements, all

water depths between the two are measured (the time-series is long enough), then

it is possible to unscramble the time-series to yield an estimate of the true profile

at the depths spanned by the thermistor chain.

Before delving into the method, a simple observation is in order that yields

insight into the validity of the inversion. If there are Nzobs observations depths,

each with a Ntobs point long time-series, then the number of known parameters

is Nzobs × Ntobs. Let the unknown true profile be determined at Nzt depths.

It is assumed that temperature observations are caused by displacements of the

water column at Nzd depths, at Ntd points in time. If (Nzd × Ntd + Nzt) ≤
(Nzobs×Ntobs), then the number of unknowns is less than the number of knowns,

and the inversion has a unique solution. This situation can be expected when

variations in displacements have a depth- and/or time-scale greater than that of

temperature variations. For example, while temperature fluctuations might have

a decorrelation scale of 1-5 m, that of displacement fluctuations might be 10-20 m.

This assumption is used in the test cases involving a uniform displacement, and

shown to be true for the test case using the internal wave model. The internal wave

model has been tuned to have similar statistics as the temperature observations in

FAF06, and hence the same assumption about displacement depth-scales is used

in Sec. 4.

The iterative method is now discussed. Given a set of temperature observa-
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tions Tobs(z, t), a starting estimate for the reference profile T (z) is made. Following

Pinkel[5],the starting estimate is chosen to be the median of Tobs(z, t), interpolated

at zt depths. An estimate of the displacement field zobs(T ) can then be made using

Tobs(z, t) and the T (z) estimate. As mentioned previously, the displacement field is

assumed to vary on a depth scale greater than zobs, and hence needs to be mapped

to zd depths, with Nzd ≤ Nzobs. A displacement increment field dzd(z, t) is then

computed as a time-difference, along with a T (z) increment field dT (z) referenced

to the value of T (z) at the bottom-most depth. The vectorized increment field is

then stored as the vector m, ordered as the displacement increment field, followed

by the temperature profile increment field.

m =

(
vec{dzd}

dT

)
(4.1)

The vector m can be used to resynthesize a temperature time-series. The algo-

rithm then consists of successively incrementing m such that the least-squares fit

between the temperature field produced by each iteration of m and the observed

temperature field is minimized.

Let the function that maps displacement and temperature increments to

a temperature time-series Test(z, t) be denoted by F(m). Thus, the relation that

expresses the difference between the estimated time-series and the observations,

∆T (z, t), and the increment to m (m̂) that is required to minimize the difference

can be expressed as,

∆T =
dF

dm
m̂

= Gm̂ (4.2)

where G can be recognized as the Jacobian of F. The increment m̂ can then be

calculated as

m̂ = (GHG + λI)−1G∆T (4.3)

where (·)H is the conjugate transpose, or Hermitian. m̂ is calculated iteratively,

where for each iteration, G is computed by incrementing each displacement and

T (z) point, and storing the resulting time-series caused by an individual increment.
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Thus G is a Nzobs × Ntobs × Npar array, where Npar = Nzd × Ntd. G has been

stacked to produce a two-dimensional array prior to the inversion in eq. 4.3. The

new estimate for displacement and temperature increments is then calculated as

mnew = m + m̂ (4.4)

The new increment field now allows for the next iteration. In the test cases

described, 5-15 iterations are typically sufficient to converge to a solution.

Various metrics and cost functions are computed during the inversion to

gauge the quality of the estimation for the current iteration. These are described

in the following section when describing the test cases.

4.3 Test case - Simulation

This section describes various test cases in order to demonstrate the inver-

sion procedure. Test cases are generated by first starting with a known temperature

profile. Known displacements are then generated either as random displacements

or using an internal wave model, at the various sensor depths in the water column.

These displacements, together with the temperature profile, are used to generate

the temperature observations that will then be inverted. Although the test cases

are ordered in an increasing order of complexity of temperature and displacement

profiles, no explicit assumptions are made during the inversion that indicate a prior

knowledge of the complexity, or lack thereof.

The water depth in all cases is chosen to be 121 m, with 11 sensors placed

between 13 m to 63 m (5 m apart). These settings are chosen based on their being

identical to those used in the FAF05 experiment.

In order to motivate the discussion, all plots are only shown for first test

case. For all the others, only those plots which show unique case-sensitive behavior

are shown. This also applies to the next section, where experimental observations

are used.
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4.3.1 Piecewise linear temperature profile with uniform

displacements

The first test case deals with a piecewise linear temperature with uniform

displacements. Displacements at any depth have a Gaussian distribution, with a

mean displacement of 0 m, and a standard deviation of 2 m. For any given time,

displacements at all depths are equal. Displacements are uncorrelated in time, and

sampled every 10 minutes. Fig. 4.2 shows the temperature profile and displacement

time-series used to generate the temperature observations (Fig. 4.3).

Due to identical displacements at all depths, the displacement scale in depth

is large, and even just 2 displacement points (Nzd = 2) should be sufficient to

estimate the profile. The depths at which the displacement is estimated are chosen

to be 5 m and 95 m. The high resolution temperature profile is estimated at 1 m

steps, and 100 points in the time-series for temperature observations are considered.
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Figure 4.2: Known piecewise linear temperature profile and uniform displacement
time-series. The numbers on the righthand panel indicate sensor depths. Displace-
ments at any sensor depth are uncorrelated Gaussian random variables. Displace-
ments at any give time are equal at all sensor depths.
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Figure 4.3: Observed temperature profile (◦C) for the test case with a piecewise
linear profile and uniform displacements.
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The starting profile estimate (Fig. 4.4) is chosen to be the temporal mean

of the observations, which is then linearly extrapolated to Nzt depths at which the

profile estimate is required.
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Figure 4.4: First T(z) guess extrapolated to Nzt depths. Circles show the mean
of observations at each depth, and the blue line shows the extrapolation to Nzt
depths.

This profile estimate is then used along with the temperature observations

Tobs(z, t) to get an estimate for the displacement time-series zobs(T, t), shown in

Fig. 4.5. This figure, when compared to the righthand panel of Fig. 4.2 reveals

differences in the displacement estimate requiring the use of the inversion.
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Figure 4.5: First estimate for displacement depths.
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Another measure of the error in displacement estimates can be seen in

Fig. 4.6 which is essentially the mean and r.m.s of Fig. 4.5. For this particular

test case, the mean of displacements was 0 m, and the r.m.s 2 m, at all depths.

Deviations from this are a sign of an incorrect estimate.
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Figure 4.6: Mean (dashed) and r.m.s (solid) for estimated displacement depths.
For this test case, if the estimates were perfect, the mean should be 0, and r.m.s
should be 2.

Fig. 4.7 shows the depthwise correlation, again obtained using the displace-

ment estimate. This figure is yet another indication of the current error in estima-

tion. Due to the uniform nature of the synthetic displacements, the figure should

have indicated a full correlation at all depths. However, this not so, especially

at the fringes, where observations are not available. As a result, profile estimates

cannot be expected at these depths.

Of course, displacement time-series are only available for synthetic test

cases. In more realistic cases, an idea of the errors in displacement estimates can
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Figure 4.7: Depth-depth correlation coefficient for displacement estimate. For this
test case, if the estimate were perfect, it would be 1 everywhere.

only be obtained by once again mapping the displacement estimate to a temper-

ature time-series (using the initial profile estimate), and comparing that with the

observations. Such a comparison is shown in Fig. 4.8 where the observations have

been subtracted out to show the error in the estimate.
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Figure 4.8: Error (◦C) in estimate of temperature observations. Displacements are
computed using the T(z) estimate, and these displacements are used to compute
the estimated time series. The error between the estimate and observations is
plotted. If all zero, then the estimate is perfect.
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Figs. 4.9 and 4.11 show the prior and posterior parameter uncertainities

for displacement and temperature profile increments. The priors are fixed before

hand, and for this case are 1 m for the displacements and scales with depth for the

temperature. These are the parameters whose increments are determined after the

inversion. If a solution is being converged upon, these covariances get smaller with

each iteration, as seen in Fig. 4.11. Once again, higher values below 70 m reflect

a lack of observations at those depths, due to which a correct estimate will never

be arrived at below 70 m.
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Figure 4.9: Prior displacement (upper panel) and temperature increment (lower
panel) rms. This is first set by the user, and has the form shown.

The next figure (Fig. 4.10) for this test case shows the profile estimate

compared to the true (known) profile and the starting estimate. Also shown is

a plot of the error with respect to the true profile. It is seen that the inversion

works well for depths at which observations are available. Beyond these depths, the

estimate is simply extrapolated, which works at the surface, but not the bottom.



102

A gauge of the quality of the estimate may be seen in Fig. 4.11 where the lack

of observations below 63 m result in poor estimation quality. However, the final

estimate is seen to be accurate until 70 m which marks the lowest depth from

which water parcels are being advected to the sensor array. This observation also

points to the ‘synthetic aperture’ -like nature of the estimation.
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Figure 4.10: Profile estimates and estimation error for the test case with a piecewise
linear profile and uniform displacements. The left-hand panel shows the starting
estimate (dashed), final estimate (circles) and the true profile (solid). The right-
hand panel shows the estimation error with respect to the true profile
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Figure 4.11: Posterior displacement increment rms (upper panel) and temperature
increment rms (lower panel). Low values show a gradual convergence. If it were 0,
then no further increments need be made. High values at the fringes indicate the
absence of observations at those depths.
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4.3.2 CTD profile with uniform displacements

This test case adds an additional level of complexity to the previous case

by having a more realistic temperature profile, while still having uniform displace-

ments, that need only be estimated at two depths (5 m and 95 m). The temperature

profile shown in Fig. 4.12 has been obtained from a CTD cast made during the

course of the FAF05 experiment. Temperature observations (Fig. 4.13) are gen-

erated via Gaussian random displacements with a mean displacement of 0 m and

and standard deviation of 2 m. For a given time, displacements are identical at all

depths. Displacements are uncorrelated in time and are 10 minutes apart. Depth

steps for the temperature profile estimate are set to be 1 m, and is the same as

the previous test case.
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Figure 4.12: Known FAF05 CTD temperature profile and uniform displacement
time-series. The numbers on the righthand panel indicate sensor depths. Displace-
ments at any sensor depth are uncorrelated Gaussian random variables. Displace-
ments at any give time are equal at all sensor depths.

Not all plots shown in the previous test case are shown for this test case,

especially since the displacement time-series are almost the same.

The final temperature estimate can be seen in Fig. 4.14, along with an error
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Figure 4.13: Observed temperature profile (◦C) for the test case with a FAF05
CTD profile and uniform displacements.

in the estimate. Once again, the estimation is seen to work well for this synthetic

case.

Fig. 4.15 shows the uncertainty variance for displacement and temperature

increments. A note should be made of the jump in uncertainty around 30 m. This

can be attributed to the non-linearities that arise when the slope of T (z) changes

with depth. Displacements will be sensitive to the to the estimated temperature

gradient at that depth. The displacement may not be right, in which case it

samples the profile at the wrong depth, tries to correct the temperature at the

wrong depth, and the iteration may not converge.
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Figure 4.14: Profile estimates and estimation error for the test case with a FAF05
CTD profile and uniform displacements. The left-hand panel shows the starting
estimate (dashed), final estimate (circles) and the true profile (solid). The right-
hand panel shows the estimation error with respect to the true profile.
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Figure 4.15: Posterior displacement increment rms (upper panel) and temperature
increment rms (lower panel). Low values show a gradual convergence. If it were 0,
then no further increments need be made. High values at the fringes indicate the
absence of observations at those depths.
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4.3.3 CTD profile with IW-induced displacements

The last test case involving synthetic data utilizes temperature observations

that are obtained via an internal wave model. Brief details regarding the internal

wave model are provided below, with further details available in Raghukumar et.

al.[9].

The same CTD profile that was used in the previous test case is used to

compute the buoyancy profile, which in turn is used to solve for the vertical modes

and the dispersion relation for internal waves in the given environment. For a

given mode number and wavenumber, the dispersion relation gives information as

to the which frequencies the internal waves can exist. The buoyancy profile is

also used to derive the internal wave spectrum which follows a power law and is

a shallow water version of the Garret-Munk spectrum. Mode amplitudes are also

chosen using the Garett-Munk model. All these ingredients are then combined

as a Fourier superposition to give displacement time series for each sensor depth.

Temperature observations can then be easily derived.

The true (known) temperature profile is assumed to stay constant through-

out the entire observation interval. This assumption may not always be true in

reality, in which case any single estimate made using the entire time-series may

not be accurate.

Due to the higher level of complexity involved, the depth steps for estimat-

ing the high resolution temperature profile has been reduced to 0.5 m, and 150

points in the time-series are used for the inversion. Data are samples every 10

minutes so this corresponds to 25 hours of data.

Fig. 4.16 shows the CTD profile and displacement time-series used to derive

the temperature observations (Fig. 4.17).



109

10 15 20 25

0

20

40

60

80

100

120

Temperature (°C)

De
pt

h 
(m

)

0 10 20 30 40

10

20

30

40

50

60

70

13 m

18 m

23 m

28 m

33 m

38 m

43 m

48 m

53 m

58 m

63 m

Time (hours)

Figure 4.16: Known FAF05 CTD temperature profile and modeled internal wave
displacement time-series. The numbers on the righthand panel indicate sensor
depths.
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Figure 4.17: Observed temperature profile (◦C), for the test case involving a FAF05
CTD profile with modeled internal wave displacements.
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Fig. 4.18 shows the depth-depth correlation coefficient using the initial dis-

placement estimate. It should be recalled that the initial displacement estimate is

made by first making an initial estimate for the temperature profile, which for this

case was the mean of the observations linearly extrapolated to Nzt depths. There

is significant difference in correlation structure compared to Fig. 4.7, due to the

non-uniform nature of displacements for this test case. As a result, displacements

have to be estimated at several depths, and not just 2 depths as was done in the

previous test cases. Nine displacement depths are chosen, 10 m apart, from 5 m

to 85 m. There is also the option to have custom displacement depths based on

the depth correlation scale, with closer-spaced displacement depths near the ther-

mocline where the correlation between depths is lowest. However, equally spaced

displacement depths provided the best estimate for this case.
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Figure 4.18: Depth-depth correlation coefficient for displacement estimate, for
the test case involving a FAF05 CTD profile, with modeled internal wave
displacements.
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The next figure (Fig. 4.19) shows the temperature anomaly at the end of

15 iterations. This is the error between the estimated and actual temperature

observations. Maximum error is seen around the thermocline, with the overall

error level much higher compared to that in Fig. 4.8.
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Figure 4.19: Error in first temperature estimate (◦C). Displacements are computed
using the first guess for T(z), and these displacements are used to compute the
estimated time series. The error between the estimate and observations is plotted.
If all zero, then the estimate is perfect.
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A jump in the uncertainty at 35 m can also be seen in the final temperature

estimate in Fig. 4.20 where the profile estimate shows the largest error around 35 m.

Depths above 13 m and below 65 m are not considered due to a lack of observations

below these depths, indicating that no water parcels from these depths are being

advected to nearby sensors.
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Figure 4.20: Profile estimates and estimation error for the test case with a FAF05
CTD profile and modeled internal wave displacements. The left-hand panel shows
the starting estimate (dashed), final estimate (circles) and the true profile (solid).
The right-hand panel shows the estimation error with respect to the true profile.

Fig. 4.21 shows the uncertainty variance for displacement and temperature

increments. A much higher level of uncertainty is seen compared to Fig. 4.15, with

the maximum occuring in the region of the thermocline, around 35 m.
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Figure 4.21: Posterior displacement increment rms (upper panel) and temperature
increment rms (lower panel). Low values show a gradual convergence. If it were 0,
then no further increments need be made. High values at the fringes indicate the
absence of observations at those depths.
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4.4 Inversion applied to FAF06 observations

This section demonstrates the ability of the inversion technique to estimate

the reference temperature profile given a set of temperature observations gathered

during the course of the FAF06 experiment.

A 16-element thermistor chain was deployed over a period of 17 days. In

order to demonstrate the inversion, only 300 samples, or 50 minutes of data are

used. The water depth was 121 m, and the sampling interval 10 seconds. The

array spanned water depths from 10 m to 40 m. Fig. 4.22 shows the temperature

observations over the period of interest.
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Figure 4.22: Observed temperature profile (◦C) for the FAF06 experiment.

Fig. 4.23 shows the displacement estimate computed using the median of

temperature observations as a reference profile. The presence of high-frequency

content in the displacement time-series is an indication of inaccuracies in the esti-

mate. This figure, compared to Fig. 4.28 further illustrates this point.
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Figure 4.23: Displacement estimates computed using the median of temperature
observations for the FAF06 experiment.
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Fig. 4.18 shows the depth-depth correlation coefficient using the initial dis-

placement estimate. The correlation between depths is even less than what is

observed in Fig. 4.18. As a result, custom displacement depths are used where

displacement estimates are made every 5 m between 5 m and 30 m, and then every

10 m between 40 m and 60 m.
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Figure 4.24: Depth-depth correlation coefficient for displacement estimate, for the
FAF06 thermistor chain data.

Fig. 4.25 shows the temperature profile estimate after 6 iterations, along

with the initial estimate. The estimation was seen to provide the lowest error after

6 iterations, after which the error was seen to increase again. This is possibly the

result of the estimation process not quite finding a true minimum. If this were

true, a global optimization method such as the use of a genetic algorithm may be

required as a next step[10]. While a much higher level of resolution is seen in the

final estimate, this figure by itself provides no information about the accuracy of

the estimate. A note should be made of the steps that can be seen in the final
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estimate. Since these occur in well-observed parts of the profile, a lack of overlap

in the time-series cannot be an issue. Since the data are rather close to the water

surface, heating of the surface is a likely candidate for alterations in the profile. A

process such as this is not currently incorporated in the estimation model.
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Figure 4.25: Starting (dashed) and final (solid) estimates for the FAF06
observations.

Fig. 4.26 shows the uncertainty variance for displacement and temperature

increments. The displacement and temperature profile increments show that while

the estimation method has been able to gradually converge to a solution between

20 m and 50 m, errors remain between 10 m to 20 m. This is also reflected in the

step-like behavior in Fig. 4.25.

The next figure shows the spectra of displacements at a mean depth of

25 m, for displacements computed using the median of temperature observations

(first estimate) and final temperature profile estimate. While not shown in the

figure, the displacement spectra were observed to get increasingly narrow band
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Figure 4.26: Posterior displacement (upper panel) and temperature increment
(lower panel) rms. Low values show a gradual convergence. If it were 0, then
no further increments need be made. High values at the fringes indicate the ab-
sence of observations at those depths.

over successive iterations. This is another indication that the iterative procedure

is producing realistic displacement profiles since a narrowband spectra reflects a

smooth displacement profile.

The final figure (Fig. 4.28) shows the modeled displacement time-series us-

ing the final estimate. A comparison with Fig. 4.23 shows a smoother displacement

time-series, consistent with Fig. 4.27.
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Figure 4.27: Spectrum of displacement estimates made at a mean depth of 25 m.
The solid line shows the spectrum obtained using the median temperature profile
of the observations in order to estimate displacements. The solid line shows the
spectrum obtained using the final estimate of temperature profile of the obser-
vations in order to compute displacements. The harmonics present in the initial
estimate are absent in the final estimate.s



121

0 10 20 30 40 50

0

10

20

30

40

50

60

Time (Minutes)

De
pt

h 
(m

)

Figure 4.28: Displacement estimates computed using the final temperature profile
estimate, for the FAF06 experiment.
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4.5 Conclusions

This chapter demonstrated the use of an inversion technique that can be

used to estimate a high-resolution background temperature profile, given a set of

temperature observations. Temperature fluctuations are assumed to be caused

by displacements that have a depth decorrelation scale much larger than that of

observed temperature fluctuations. This assumption gives rise to a well-posed

inversion problem that is then iteratively solved using the Gauss-Newton method.

Several test cases are demonstrated, with displacements ranging from uni-

form to those derived using an internal wave model. The internal wave model is

matched to a set of experimental temperature observations, on which the inversion

is finally performed. Similar results are seen for the internal wave model and the

experimental observations, which shows promise for this method of inversion.

Some of the limitations of this method are that the temperature profile is

required to be monotonic. In addition, sensors should be placed close enough that

there is an overlap of displacement depths between sensors. While the method

seems to work with non-linear profiles, severe non-linearities such as regions of

rapidly changing slopes, still pose a bit of a challenge.
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Chapter 5

Conclusions and Future Work

In this dissertation, pressure sensitivity kernels were applied to time-reversal

acoustics, in an effort to understand and quantify the observed stability of the time-

reversal focal spot. The time-reversal focal spot has been previously observed to

produce a focal spot over an hour after the initial Green’s functions were acquired.

The focal spot was produced despite the presence of internal wave-induced sound

speed fluctuations, which results in a change in the Green’s function between the

time it is acquired and retransmitted.

The first Born, or single scattering approximation was used in deriving

an expression for a sensitivity kernel that linearly maps changes in sound speed

to changes in pressure at the receiver. These kernels are then studied from the

point of view of time-reversal and applied to sound transmission in free space and a

Pekeris waveguide. These simple examples were useful in providing insight into the

stability of the time reversal focal spot. It was found that sensitivity kernels have

a Fresnel-like interference pattern consisting of regions of positive and negative

sensitivity to sound speed changes. During time-reversal transmissions, several of

these kernels, corresponding to different paths, were found to overlap due to the

fact that time-reversal delays each path such that they all arrive at the same time.

Overlapping kernels, each having different patterns of sensitivity, result in a net

reduction of sensitivity compared to the sensitivity of a single path.

As a logical next step, prior knowledge of the kernels that make up the

focal spot was utilized to derive optimized source functions that can provide an
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environmentally-adaptive focusing ability. These functions are regularized versions

of the inverse filter, with a physics-based regularization using sensitivity kernels

and the covariance of sound speed fluctuations. The optimized source functions

were seen to have a focal spot quality in-between time-reversal and the inverse

filter, but a stability greater than both. While time-reversal is still an enormously

viable focusing scheme due to its inherent simplicity, the optimized source functions

may be useful when environmental data are available such as during shallow-water

tomography experiments.

Sensitivity kernels and the optimized source functions were then tested us-

ing experimental data gathered during the FAF05 experiment. It was found that

the pressure sensitivity to sound speed changes was quadratic in nature, as a result

of which the linear first Born approximation is only valid for about 10 minutes of

Green’s function evolution. Sensitivity kernels were derived for the experimen-

tal environment, and used to compute optimized source functions. Sound speed

statistics for the environment were calculated using an internal wave model whose

characteristics was matched to thermistor chain measurements. Optimized source

functions were then compared to time-reversal and the inverse filter and gains

found to be in the right sense, although small, due to the limited time-windows

available during which the kernels were linear.

The last part of the dissertation demonstrated a method of inverting ther-

mistor chain data for a reference temperature profile. Knowledge of a reference

profile is useful in acoustic propagation modeling, or in order to compute a sensi-

tivity kernel to model pressure and travel-time fluctuations. Temperature observa-

tions were assumed to be caused by displacements which have a larger time- and

depth-scale compared to temperature. A Gauss-Newton method was then utilized

to invert for a reference temperature. The method was then demonstrated on sev-

eral test cases where the estimate was shown to compare well with a known profile.

Finally, the method was demonstrated on thermistor chain data available during

the FAF05 experiment, where it was shown to also perform well with respect to

several diagnostics.
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5.1 Future Work

There are several aspects of this dissertation that can be explored further,

some of which may be summarized as follows.

• The second Born approximation may be applied in deriving pressure sensi-

tivity kernels, which will allow them to track received pressure even as it

varies quadratically. This enhanced tracking ability could possibly be used

to predict the behavior of the time-reveral focal spot in realistic perturba-

tions scenarios. This can also lead to the optimized source functions being

demonstrated on significantly longer time scales compared to the 10 minutes

currently demonstrated.

• Equalizers in underwater communications currently track arrival paths in

order to minimize intersymbol interference. Sensitivity kernels could prove

useful in enhancing equalizer performance by providing information on which

paths are more likely to fluctuate given a particular perturbation scenario

compared to others.

• The inversion method for a temperature profile currently uses for its first

estimate the mean, median or the first of temperature observations. Bet-

ter first estimates for the temperature profile could lead to improved final

estimates.


